| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofreq | GIF version | ||
| Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofreq | ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 4085 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑥)𝑆(𝑔‘𝑥))) | |
| 2 | 1 | ralbidv 2530 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
| 3 | 2 | opabbidv 4150 | . 2 ⊢ (𝑅 = 𝑆 → {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)}) |
| 4 | df-ofr 6225 | . 2 ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} | |
| 5 | df-ofr 6225 | . 2 ⊢ ∘𝑟 𝑆 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2287 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∀wral 2508 ∩ cin 3196 class class class wbr 4083 {copab 4144 dom cdm 4719 ‘cfv 5318 ∘𝑟 cofr 6223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-br 4084 df-opab 4146 df-ofr 6225 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |