Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofreq | GIF version |
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.) |
Ref | Expression |
---|---|
ofreq | ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3967 | . . . 4 ⊢ (𝑅 = 𝑆 → ((𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ (𝑓‘𝑥)𝑆(𝑔‘𝑥))) | |
2 | 1 | ralbidv 2457 | . . 3 ⊢ (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
3 | 2 | opabbidv 4030 | . 2 ⊢ (𝑅 = 𝑆 → {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)}) |
4 | df-ofr 6033 | . 2 ⊢ ∘𝑟 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} | |
5 | df-ofr 6033 | . 2 ⊢ ∘𝑟 𝑆 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑆(𝑔‘𝑥)} | |
6 | 3, 4, 5 | 3eqtr4g 2215 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1335 ∀wral 2435 ∩ cin 3101 class class class wbr 3965 {copab 4024 dom cdm 4586 ‘cfv 5170 ∘𝑟 cofr 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-ral 2440 df-br 3966 df-opab 4026 df-ofr 6033 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |