ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofreq GIF version

Theorem ofreq 6192
Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Assertion
Ref Expression
ofreq (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆)

Proof of Theorem ofreq
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 4064 . . . 4 (𝑅 = 𝑆 → ((𝑓𝑥)𝑅(𝑔𝑥) ↔ (𝑓𝑥)𝑆(𝑔𝑥)))
21ralbidv 2510 . . 3 (𝑅 = 𝑆 → (∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥) ↔ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)))
32opabbidv 4129 . 2 (𝑅 = 𝑆 → {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)} = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)})
4 df-ofr 6189 . 2 𝑟 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
5 df-ofr 6189 . 2 𝑟 𝑆 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑆(𝑔𝑥)}
63, 4, 53eqtr4g 2267 1 (𝑅 = 𝑆 → ∘𝑟 𝑅 = ∘𝑟 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wral 2488  cin 3176   class class class wbr 4062  {copab 4123  dom cdm 4696  cfv 5294  𝑟 cofr 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ral 2493  df-br 4063  df-opab 4125  df-ofr 6189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator