ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ofexg Unicode version

Theorem ofexg 6054
Description: A function operation restricted to a set is a set. (Contributed by NM, 28-Jul-2014.)
Assertion
Ref Expression
ofexg  |-  ( A  e.  V  ->  (  oF R  |`  A )  e.  _V )

Proof of Theorem ofexg
Dummy variables  f  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 6050 . . 3  |-  oF R  =  ( f  e.  _V ,  g  e.  _V  |->  ( x  e.  ( dom  f  i^i  dom  g )  |->  ( ( f `  x
) R ( g `
 x ) ) ) )
21mpofun 5944 . 2  |-  Fun  oF R
3 resfunexg 5706 . 2  |-  ( ( Fun  oF R  /\  A  e.  V
)  ->  (  oF R  |`  A )  e.  _V )
42, 3mpan 421 1  |-  ( A  e.  V  ->  (  oF R  |`  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726    i^i cin 3115    |-> cmpt 4043   dom cdm 4604    |` cres 4606   Fun wfun 5182   ` cfv 5188  (class class class)co 5842    oFcof 6048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-oprab 5846  df-mpo 5847  df-of 6050
This theorem is referenced by:  ofmresex  6105
  Copyright terms: Public domain W3C validator