ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoeq123 Unicode version

Theorem mpoeq123 5912
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
mpoeq123  |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  -> 
( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Distinct variable groups:    x, y, A   
y, B    x, D, y    y, E
Allowed substitution hints:    B( x)    C( x, y)    E( x)    F( x, y)

Proof of Theorem mpoeq123
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1521 . . . 4  |-  F/ x  A  =  D
2 nfra1 2501 . . . 4  |-  F/ x A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F )
31, 2nfan 1558 . . 3  |-  F/ x
( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )
4 nfv 1521 . . . 4  |-  F/ y  A  =  D
5 nfcv 2312 . . . . 5  |-  F/_ y A
6 nfv 1521 . . . . . 6  |-  F/ y  B  =  E
7 nfra1 2501 . . . . . 6  |-  F/ y A. y  e.  B  C  =  F
86, 7nfan 1558 . . . . 5  |-  F/ y ( B  =  E  /\  A. y  e.  B  C  =  F )
95, 8nfralxy 2508 . . . 4  |-  F/ y A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F )
104, 9nfan 1558 . . 3  |-  F/ y ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )
11 nfv 1521 . . 3  |-  F/ z ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )
12 rsp 2517 . . . . . . 7  |-  ( A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F )  ->  (
x  e.  A  -> 
( B  =  E  /\  A. y  e.  B  C  =  F ) ) )
13 rsp 2517 . . . . . . . . . 10  |-  ( A. y  e.  B  C  =  F  ->  ( y  e.  B  ->  C  =  F ) )
14 eqeq2 2180 . . . . . . . . . 10  |-  ( C  =  F  ->  (
z  =  C  <->  z  =  F ) )
1513, 14syl6 33 . . . . . . . . 9  |-  ( A. y  e.  B  C  =  F  ->  ( y  e.  B  ->  (
z  =  C  <->  z  =  F ) ) )
1615pm5.32d 447 . . . . . . . 8  |-  ( A. y  e.  B  C  =  F  ->  ( ( y  e.  B  /\  z  =  C )  <->  ( y  e.  B  /\  z  =  F )
) )
17 eleq2 2234 . . . . . . . . 9  |-  ( B  =  E  ->  (
y  e.  B  <->  y  e.  E ) )
1817anbi1d 462 . . . . . . . 8  |-  ( B  =  E  ->  (
( y  e.  B  /\  z  =  F
)  <->  ( y  e.  E  /\  z  =  F ) ) )
1916, 18sylan9bbr 460 . . . . . . 7  |-  ( ( B  =  E  /\  A. y  e.  B  C  =  F )  ->  (
( y  e.  B  /\  z  =  C
)  <->  ( y  e.  E  /\  z  =  F ) ) )
2012, 19syl6 33 . . . . . 6  |-  ( A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F )  ->  (
x  e.  A  -> 
( ( y  e.  B  /\  z  =  C )  <->  ( y  e.  E  /\  z  =  F ) ) ) )
2120pm5.32d 447 . . . . 5  |-  ( A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F )  ->  (
( x  e.  A  /\  ( y  e.  B  /\  z  =  C
) )  <->  ( x  e.  A  /\  (
y  e.  E  /\  z  =  F )
) ) )
22 eleq2 2234 . . . . . 6  |-  ( A  =  D  ->  (
x  e.  A  <->  x  e.  D ) )
2322anbi1d 462 . . . . 5  |-  ( A  =  D  ->  (
( x  e.  A  /\  ( y  e.  E  /\  z  =  F
) )  <->  ( x  e.  D  /\  (
y  e.  E  /\  z  =  F )
) ) )
2421, 23sylan9bbr 460 . . . 4  |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  -> 
( ( x  e.  A  /\  ( y  e.  B  /\  z  =  C ) )  <->  ( x  e.  D  /\  (
y  e.  E  /\  z  =  F )
) ) )
25 anass 399 . . . 4  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( x  e.  A  /\  (
y  e.  B  /\  z  =  C )
) )
26 anass 399 . . . 4  |-  ( ( ( x  e.  D  /\  y  e.  E
)  /\  z  =  F )  <->  ( x  e.  D  /\  (
y  e.  E  /\  z  =  F )
) )
2724, 25, 263bitr4g 222 . . 3  |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  -> 
( ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C )  <->  ( (
x  e.  D  /\  y  e.  E )  /\  z  =  F
) ) )
283, 10, 11, 27oprabbid 5906 . 2  |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  D  /\  y  e.  E )  /\  z  =  F ) } )
29 df-mpo 5858 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
30 df-mpo 5858 . 2  |-  ( x  e.  D ,  y  e.  E  |->  F )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  D  /\  y  e.  E )  /\  z  =  F
) }
3128, 29, 303eqtr4g 2228 1  |-  ( ( A  =  D  /\  A. x  e.  A  ( B  =  E  /\  A. y  e.  B  C  =  F ) )  -> 
( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  D , 
y  e.  E  |->  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   {coprab 5854    e. cmpo 5855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-oprab 5857  df-mpo 5858
This theorem is referenced by:  mpoeq12  5913  mapxpen  6826
  Copyright terms: Public domain W3C validator