Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfoprab | Unicode version |
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
nfoprab.1 |
Ref | Expression |
---|---|
nfoprab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oprab 5846 | . 2 | |
2 | nfv 1516 | . . . . . . 7 | |
3 | nfoprab.1 | . . . . . . 7 | |
4 | 2, 3 | nfan 1553 | . . . . . 6 |
5 | 4 | nfex 1625 | . . . . 5 |
6 | 5 | nfex 1625 | . . . 4 |
7 | 6 | nfex 1625 | . . 3 |
8 | 7 | nfab 2313 | . 2 |
9 | 1, 8 | nfcxfr 2305 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wnf 1448 wex 1480 cab 2151 wnfc 2295 cop 3579 coprab 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-oprab 5846 |
This theorem is referenced by: nfmpo 5911 |
Copyright terms: Public domain | W3C validator |