ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfoprab Unicode version

Theorem nfoprab 5873
Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
Hypothesis
Ref Expression
nfoprab.1  |-  F/ w ph
Assertion
Ref Expression
nfoprab  |-  F/_ w { <. <. x ,  y
>. ,  z >.  | 
ph }
Distinct variable groups:    x, w    y, w    z, w
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem nfoprab
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5828 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { v  |  E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfv 1508 . . . . . . 7  |-  F/ w  v  =  <. <. x ,  y >. ,  z
>.
3 nfoprab.1 . . . . . . 7  |-  F/ w ph
42, 3nfan 1545 . . . . . 6  |-  F/ w
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph )
54nfex 1617 . . . . 5  |-  F/ w E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
65nfex 1617 . . . 4  |-  F/ w E. y E. z ( v  =  <. <. x ,  y >. ,  z
>.  /\  ph )
76nfex 1617 . . 3  |-  F/ w E. x E. y E. z ( v  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
87nfab 2304 . 2  |-  F/_ w { v  |  E. x E. y E. z
( v  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
91, 8nfcxfr 2296 1  |-  F/_ w { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335   F/wnf 1440   E.wex 1472   {cab 2143   F/_wnfc 2286   <.cop 3563   {coprab 5825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-oprab 5828
This theorem is referenced by:  nfmpo  5890
  Copyright terms: Public domain W3C validator