ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltnle Unicode version

Theorem zltnle 9328
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zltnle  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem zltnle
StepHypRef Expression
1 zre 9286 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  RR )
2 zre 9286 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  RR )
3 lenlt 8062 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
41, 2, 3syl2anr 290 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  <->  -.  A  <  B ) )
54biimpd 144 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <_  A  ->  -.  A  <  B
) )
65con2d 625 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  -.  B  <_  A
) )
7 ztri3or 9325 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
8 ax-1 6 . . . . 5  |-  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B ) )
98a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
10 eqcom 2191 . . . . . . . . 9  |-  ( A  =  B  <->  B  =  A )
11 eqle 8078 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B  =  A )  ->  B  <_  A )
1210, 11sylan2b 287 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  =  B )  ->  B  <_  A )
1312ex 115 . . . . . . 7  |-  ( B  e.  RR  ->  ( A  =  B  ->  B  <_  A ) )
1413adantl 277 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  RR )  ->  ( A  =  B  ->  B  <_  A
) )
151, 14sylan2 286 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  B  <_  A
) )
16 pm2.24 622 . . . . 5  |-  ( B  <_  A  ->  ( -.  B  <_  A  ->  A  <  B ) )
1715, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =  B  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
18 ltle 8074 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
191, 2, 18syl2anr 290 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  B  <_  A )
)
2019, 16syl6 33 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  A  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
219, 17, 203jaod 1315 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
227, 21mpd 13 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  B  <_  A  ->  A  <  B
) )
236, 22impbid 129 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 979    = wceq 1364    e. wcel 2160   class class class wbr 4018   RRcr 7839    < clt 8021    <_ cle 8022   ZZcz 9282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283
This theorem is referenced by:  znnnlt1  9330  nn0n0n1ge2b  9361  eluzdc  9639  fzdcel  10069  fzn  10071  fzpreddisj  10100  fzp1disj  10109  fzneuz  10130  fznuz  10131  uznfz  10132  fzp1nel  10133  difelfznle  10164  fzodisj  10207  exfzdc  10269  modfzo0difsn  10425  fzfig  10460  iseqf1olemqk  10524  exp3val  10552  facdiv  10749  bcval5  10774  zfz1isolemiso  10850  2zsupmax  11265  2zinfmin  11282  summodclem3  11419  fprodntrivap  11623  alzdvds  11891  fzm1ndvds  11893  fzo0dvdseq  11894  n2dvds1  11948  dvdsbnd  11988  algcvgblem  12080  prmndvdsfaclt  12187  odzdvds  12276  pcprendvds  12321  pcdvdsb  12351  pc2dvds  12361  pcmpt  12374  pockthg  12388  prmunb  12393  1arith  12398  4sqlem11  12432  lgsdilem2  14890  uzdcinzz  15003
  Copyright terms: Public domain W3C validator