| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltnle | Unicode version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zltnle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9349 |
. . . . 5
| |
| 2 | zre 9349 |
. . . . 5
| |
| 3 | lenlt 8121 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anr 290 |
. . . 4
|
| 5 | 4 | biimpd 144 |
. . 3
|
| 6 | 5 | con2d 625 |
. 2
|
| 7 | ztri3or 9388 |
. . 3
| |
| 8 | ax-1 6 |
. . . . 5
| |
| 9 | 8 | a1i 9 |
. . . 4
|
| 10 | eqcom 2198 |
. . . . . . . . 9
| |
| 11 | eqle 8137 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sylan2b 287 |
. . . . . . . 8
|
| 13 | 12 | ex 115 |
. . . . . . 7
|
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 1, 14 | sylan2 286 |
. . . . 5
|
| 16 | pm2.24 622 |
. . . . 5
| |
| 17 | 15, 16 | syl6 33 |
. . . 4
|
| 18 | ltle 8133 |
. . . . . 6
| |
| 19 | 1, 2, 18 | syl2anr 290 |
. . . . 5
|
| 20 | 19, 16 | syl6 33 |
. . . 4
|
| 21 | 9, 17, 20 | 3jaod 1315 |
. . 3
|
| 22 | 7, 21 | mpd 13 |
. 2
|
| 23 | 6, 22 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-inn 9010 df-n0 9269 df-z 9346 |
| This theorem is referenced by: znnnlt1 9393 nn0n0n1ge2b 9424 eluzdc 9703 fzdcel 10134 fzn 10136 fzpreddisj 10165 fzp1disj 10174 fzneuz 10195 fznuz 10196 uznfz 10197 fzp1nel 10198 difelfznle 10229 nelfzo 10246 fzodisj 10273 exfzdc 10335 modfzo0difsn 10506 fzfig 10541 iseqf1olemqk 10618 exp3val 10652 facdiv 10849 bcval5 10874 zfz1isolemiso 10950 2zsupmax 11410 2zinfmin 11427 summodclem3 11564 fprodntrivap 11768 alzdvds 12038 fzm1ndvds 12040 fzo0dvdseq 12041 n2dvds1 12096 bitsfzolem 12138 bitsfzo 12139 dvdsbnd 12150 algcvgblem 12244 prmndvdsfaclt 12351 odzdvds 12441 pcprendvds 12486 pcdvdsb 12516 pc2dvds 12526 pcmpt 12539 pockthg 12553 prmunb 12558 1arith 12563 4sqlem11 12597 perfectlem2 15344 lgsdilem2 15385 lgsquadlem2 15427 uzdcinzz 15552 |
| Copyright terms: Public domain | W3C validator |