| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zltnle | Unicode version | ||
| Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zltnle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre 9450 |
. . . . 5
| |
| 2 | zre 9450 |
. . . . 5
| |
| 3 | lenlt 8222 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anr 290 |
. . . 4
|
| 5 | 4 | biimpd 144 |
. . 3
|
| 6 | 5 | con2d 627 |
. 2
|
| 7 | ztri3or 9489 |
. . 3
| |
| 8 | ax-1 6 |
. . . . 5
| |
| 9 | 8 | a1i 9 |
. . . 4
|
| 10 | eqcom 2231 |
. . . . . . . . 9
| |
| 11 | eqle 8238 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sylan2b 287 |
. . . . . . . 8
|
| 13 | 12 | ex 115 |
. . . . . . 7
|
| 14 | 13 | adantl 277 |
. . . . . 6
|
| 15 | 1, 14 | sylan2 286 |
. . . . 5
|
| 16 | pm2.24 624 |
. . . . 5
| |
| 17 | 15, 16 | syl6 33 |
. . . 4
|
| 18 | ltle 8234 |
. . . . . 6
| |
| 19 | 1, 2, 18 | syl2anr 290 |
. . . . 5
|
| 20 | 19, 16 | syl6 33 |
. . . 4
|
| 21 | 9, 17, 20 | 3jaod 1338 |
. . 3
|
| 22 | 7, 21 | mpd 13 |
. 2
|
| 23 | 6, 22 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: znnnlt1 9494 nnnle0 9495 nn0n0n1ge2b 9526 eluzdc 9805 fzdcel 10236 fzn 10238 fzpreddisj 10267 fzp1disj 10276 fzneuz 10297 fznuz 10298 uznfz 10299 fzp1nel 10300 difelfznle 10331 nelfzo 10348 fzodisj 10376 exfzdc 10446 modfzo0difsn 10617 fzfig 10652 iseqf1olemqk 10729 exp3val 10763 facdiv 10960 bcval5 10985 zfz1isolemiso 11061 ccatsymb 11137 swrdnd 11191 swrdsbslen 11198 swrdspsleq 11199 pfxccat3 11266 swrdccat 11267 pfxccat3a 11270 2zsupmax 11737 2zinfmin 11754 summodclem3 11891 fprodntrivap 12095 alzdvds 12365 fzm1ndvds 12367 fzo0dvdseq 12368 n2dvds1 12423 bitsfzolem 12465 bitsfzo 12466 dvdsbnd 12477 algcvgblem 12571 prmndvdsfaclt 12678 odzdvds 12768 pcprendvds 12813 pcdvdsb 12843 pc2dvds 12853 pcmpt 12866 pockthg 12880 prmunb 12885 1arith 12890 4sqlem11 12924 perfectlem2 15674 lgsdilem2 15715 lgsquadlem2 15757 uzdcinzz 16162 |
| Copyright terms: Public domain | W3C validator |