Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltxrlt | Unicode version |
Description: The standard less-than and the extended real less-than are identical when restricted to the non-extended reals . (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ltxrlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltxr 7938 | . . . . 5 | |
2 | 1 | breqi 3988 | . . . 4 |
3 | brun 4033 | . . . 4 | |
4 | 2, 3 | bitri 183 | . . 3 |
5 | eleq1 2229 | . . . . . . 7 | |
6 | breq1 3985 | . . . . . . 7 | |
7 | 5, 6 | 3anbi13d 1304 | . . . . . 6 |
8 | eleq1 2229 | . . . . . . 7 | |
9 | breq2 3986 | . . . . . . 7 | |
10 | 8, 9 | 3anbi23d 1305 | . . . . . 6 |
11 | eqid 2165 | . . . . . 6 | |
12 | 7, 10, 11 | brabg 4247 | . . . . 5 |
13 | simp3 989 | . . . . 5 | |
14 | 12, 13 | syl6bi 162 | . . . 4 |
15 | brun 4033 | . . . . 5 | |
16 | brxp 4635 | . . . . . . . . . . 11 | |
17 | 16 | simprbi 273 | . . . . . . . . . 10 |
18 | elsni 3594 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 14 | . . . . . . . . 9 |
20 | 19 | a1i 9 | . . . . . . . 8 |
21 | renepnf 7946 | . . . . . . . . 9 | |
22 | 21 | neneqd 2357 | . . . . . . . 8 |
23 | pm2.24 611 | . . . . . . . 8 | |
24 | 20, 22, 23 | syl6ci 1433 | . . . . . . 7 |
25 | 24 | adantl 275 | . . . . . 6 |
26 | brxp 4635 | . . . . . . . . . . 11 | |
27 | 26 | simplbi 272 | . . . . . . . . . 10 |
28 | elsni 3594 | . . . . . . . . . 10 | |
29 | 27, 28 | syl 14 | . . . . . . . . 9 |
30 | 29 | a1i 9 | . . . . . . . 8 |
31 | renemnf 7947 | . . . . . . . . 9 | |
32 | 31 | neneqd 2357 | . . . . . . . 8 |
33 | pm2.24 611 | . . . . . . . 8 | |
34 | 30, 32, 33 | syl6ci 1433 | . . . . . . 7 |
35 | 34 | adantr 274 | . . . . . 6 |
36 | 25, 35 | jaod 707 | . . . . 5 |
37 | 15, 36 | syl5bi 151 | . . . 4 |
38 | 14, 37 | jaod 707 | . . 3 |
39 | 4, 38 | syl5bi 151 | . 2 |
40 | 12 | 3adant3 1007 | . . . . . 6 |
41 | 40 | ibir 176 | . . . . 5 |
42 | 41 | orcd 723 | . . . 4 |
43 | 42, 4 | sylibr 133 | . . 3 |
44 | 43 | 3expia 1195 | . 2 |
45 | 39, 44 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 cun 3114 csn 3576 class class class wbr 3982 copab 4042 cxp 4602 cr 7752 cltrr 7757 cpnf 7930 cmnf 7931 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: axltirr 7965 axltwlin 7966 axlttrn 7967 axltadd 7968 axapti 7969 axmulgt0 7970 axsuploc 7971 0lt1 8025 recexre 8476 recexgt0 8478 remulext1 8497 arch 9111 caucvgrelemcau 10922 caucvgre 10923 |
Copyright terms: Public domain | W3C validator |