ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxrlt Unicode version

Theorem ltxrlt 8036
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8010 . . . . 5  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
21breqi 4021 . . . 4  |-  ( A  <  B  <->  A ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) B )
3 brun 4066 . . . 4  |-  ( A ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) ) B  <-> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
42, 3bitri 184 . . 3  |-  ( A  <  B  <->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
5 eleq1 2250 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  RR  <->  A  e.  RR ) )
6 breq1 4018 . . . . . . 7  |-  ( x  =  A  ->  (
x  <RR  y  <->  A  <RR  y ) )
75, 63anbi13d 1324 . . . . . 6  |-  ( x  =  A  ->  (
( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y ) ) )
8 eleq1 2250 . . . . . . 7  |-  ( y  =  B  ->  (
y  e.  RR  <->  B  e.  RR ) )
9 breq2 4019 . . . . . . 7  |-  ( y  =  B  ->  ( A  <RR  y  <->  A  <RR  B ) )
108, 93anbi23d 1325 . . . . . 6  |-  ( y  =  B  ->  (
( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y )  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
11 eqid 2187 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }
127, 10, 11brabg 4281 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
13 simp3 1000 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <RR  B )
1412, 13biimtrdi 163 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  ->  A  <RR  B ) )
15 brun 4066 . . . . 5  |-  ( A ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  \/  A ( { -oo }  X.  RR ) B ) )
16 brxp 4669 . . . . . . . . . . 11  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  <-> 
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } ) )
1716simprbi 275 . . . . . . . . . 10  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  e.  { +oo } )
18 elsni 3622 . . . . . . . . . 10  |-  ( B  e.  { +oo }  ->  B  = +oo )
1917, 18syl 14 . . . . . . . . 9  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  = +oo )
2019a1i 9 . . . . . . . 8  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  B  = +oo ) )
21 renepnf 8018 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  =/= +oo )
2221neneqd 2378 . . . . . . . 8  |-  ( B  e.  RR  ->  -.  B  = +oo )
23 pm2.24 622 . . . . . . . 8  |-  ( B  = +oo  ->  ( -.  B  = +oo  ->  A  <RR  B ) )
2420, 22, 23syl6ci 1455 . . . . . . 7  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  A  <RR  B ) )
2524adantl 277 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  ->  A  <RR  B ) )
26 brxp 4669 . . . . . . . . . . 11  |-  ( A ( { -oo }  X.  RR ) B  <->  ( A  e.  { -oo }  /\  B  e.  RR )
)
2726simplbi 274 . . . . . . . . . 10  |-  ( A ( { -oo }  X.  RR ) B  ->  A  e.  { -oo }
)
28 elsni 3622 . . . . . . . . . 10  |-  ( A  e.  { -oo }  ->  A  = -oo )
2927, 28syl 14 . . . . . . . . 9  |-  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo )
3029a1i 9 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo ) )
31 renemnf 8019 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
3231neneqd 2378 . . . . . . . 8  |-  ( A  e.  RR  ->  -.  A  = -oo )
33 pm2.24 622 . . . . . . . 8  |-  ( A  = -oo  ->  ( -.  A  = -oo  ->  A  <RR  B ) )
3430, 32, 33syl6ci 1455 . . . . . . 7  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3534adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3625, 35jaod 718 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  \/  A ( { -oo }  X.  RR ) B )  ->  A  <RR  B ) )
3715, 36biimtrid 152 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  ->  A  <RR  B ) )
3814, 37jaod 718 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B )  ->  A  <RR  B ) )
394, 38biimtrid 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <RR  B ) )
40123adant3 1018 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
4140ibir 177 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )
4241orcd 734 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
4342, 4sylibr 134 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <  B )
44433expia 1206 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  ->  A  <  B ) )
4539, 44impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 979    = wceq 1363    e. wcel 2158    u. cun 3139   {csn 3604   class class class wbr 4015   {copab 4075    X. cxp 4636   RRcr 7823    <RR cltrr 7828   +oocpnf 8002   -oocmnf 8003    < clt 8005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-pnf 8007  df-mnf 8008  df-ltxr 8010
This theorem is referenced by:  axltirr  8037  axltwlin  8038  axlttrn  8039  axltadd  8040  axapti  8041  axmulgt0  8042  axsuploc  8043  0lt1  8097  recexre  8548  recexgt0  8550  remulext1  8569  arch  9186  caucvgrelemcau  11002  caucvgre  11003
  Copyright terms: Public domain W3C validator