| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxrlt | Unicode version | ||
| Description: The standard less-than
|
| Ref | Expression |
|---|---|
| ltxrlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr 8147 |
. . . . 5
| |
| 2 | 1 | breqi 4065 |
. . . 4
|
| 3 | brun 4111 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | eleq1 2270 |
. . . . . . 7
| |
| 6 | breq1 4062 |
. . . . . . 7
| |
| 7 | 5, 6 | 3anbi13d 1327 |
. . . . . 6
|
| 8 | eleq1 2270 |
. . . . . . 7
| |
| 9 | breq2 4063 |
. . . . . . 7
| |
| 10 | 8, 9 | 3anbi23d 1328 |
. . . . . 6
|
| 11 | eqid 2207 |
. . . . . 6
| |
| 12 | 7, 10, 11 | brabg 4333 |
. . . . 5
|
| 13 | simp3 1002 |
. . . . 5
| |
| 14 | 12, 13 | biimtrdi 163 |
. . . 4
|
| 15 | brun 4111 |
. . . . 5
| |
| 16 | brxp 4724 |
. . . . . . . . . . 11
| |
| 17 | 16 | simprbi 275 |
. . . . . . . . . 10
|
| 18 | elsni 3661 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | renepnf 8155 |
. . . . . . . . 9
| |
| 22 | 21 | neneqd 2399 |
. . . . . . . 8
|
| 23 | pm2.24 622 |
. . . . . . . 8
| |
| 24 | 20, 22, 23 | syl6ci 1466 |
. . . . . . 7
|
| 25 | 24 | adantl 277 |
. . . . . 6
|
| 26 | brxp 4724 |
. . . . . . . . . . 11
| |
| 27 | 26 | simplbi 274 |
. . . . . . . . . 10
|
| 28 | elsni 3661 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | 29 | a1i 9 |
. . . . . . . 8
|
| 31 | renemnf 8156 |
. . . . . . . . 9
| |
| 32 | 31 | neneqd 2399 |
. . . . . . . 8
|
| 33 | pm2.24 622 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | syl6ci 1466 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 25, 35 | jaod 719 |
. . . . 5
|
| 37 | 15, 36 | biimtrid 152 |
. . . 4
|
| 38 | 14, 37 | jaod 719 |
. . 3
|
| 39 | 4, 38 | biimtrid 152 |
. 2
|
| 40 | 12 | 3adant3 1020 |
. . . . . 6
|
| 41 | 40 | ibir 177 |
. . . . 5
|
| 42 | 41 | orcd 735 |
. . . 4
|
| 43 | 42, 4 | sylibr 134 |
. . 3
|
| 44 | 43 | 3expia 1208 |
. 2
|
| 45 | 39, 44 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-pnf 8144 df-mnf 8145 df-ltxr 8147 |
| This theorem is referenced by: axltirr 8174 axltwlin 8175 axlttrn 8176 axltadd 8177 axapti 8178 axmulgt0 8179 axsuploc 8180 0lt1 8234 recexre 8686 recexgt0 8688 remulext1 8707 arch 9327 caucvgrelemcau 11406 caucvgre 11407 |
| Copyright terms: Public domain | W3C validator |