ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltxrlt Unicode version

Theorem ltxrlt 8013
Description: The standard less-than  <RR and the extended real less-than  < are identical when restricted to the non-extended reals  RR. (Contributed by NM, 13-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltxrlt  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )

Proof of Theorem ltxrlt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7987 . . . . 5  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
21breqi 4006 . . . 4  |-  ( A  <  B  <->  A ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) B )
3 brun 4051 . . . 4  |-  ( A ( { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) ) B  <-> 
( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
42, 3bitri 184 . . 3  |-  ( A  <  B  <->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
5 eleq1 2240 . . . . . . 7  |-  ( x  =  A  ->  (
x  e.  RR  <->  A  e.  RR ) )
6 breq1 4003 . . . . . . 7  |-  ( x  =  A  ->  (
x  <RR  y  <->  A  <RR  y ) )
75, 63anbi13d 1314 . . . . . 6  |-  ( x  =  A  ->  (
( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y ) ) )
8 eleq1 2240 . . . . . . 7  |-  ( y  =  B  ->  (
y  e.  RR  <->  B  e.  RR ) )
9 breq2 4004 . . . . . . 7  |-  ( y  =  B  ->  ( A  <RR  y  <->  A  <RR  B ) )
108, 93anbi23d 1315 . . . . . 6  |-  ( y  =  B  ->  (
( A  e.  RR  /\  y  e.  RR  /\  A  <RR  y )  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
11 eqid 2177 . . . . . 6  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }
127, 10, 11brabg 4266 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
13 simp3 999 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <RR  B )
1412, 13syl6bi 163 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  ->  A  <RR  B ) )
15 brun 4051 . . . . 5  |-  ( A ( ( ( RR  u.  { -oo }
)  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  <->  ( A
( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  \/  A ( { -oo }  X.  RR ) B ) )
16 brxp 4654 . . . . . . . . . . 11  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  <-> 
( A  e.  ( RR  u.  { -oo } )  /\  B  e. 
{ +oo } ) )
1716simprbi 275 . . . . . . . . . 10  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  e.  { +oo } )
18 elsni 3609 . . . . . . . . . 10  |-  ( B  e.  { +oo }  ->  B  = +oo )
1917, 18syl 14 . . . . . . . . 9  |-  ( A ( ( RR  u.  { -oo } )  X. 
{ +oo } ) B  ->  B  = +oo )
2019a1i 9 . . . . . . . 8  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  B  = +oo ) )
21 renepnf 7995 . . . . . . . . 9  |-  ( B  e.  RR  ->  B  =/= +oo )
2221neneqd 2368 . . . . . . . 8  |-  ( B  e.  RR  ->  -.  B  = +oo )
23 pm2.24 621 . . . . . . . 8  |-  ( B  = +oo  ->  ( -.  B  = +oo  ->  A  <RR  B ) )
2420, 22, 23syl6ci 1445 . . . . . . 7  |-  ( B  e.  RR  ->  ( A ( ( RR  u.  { -oo }
)  X.  { +oo } ) B  ->  A  <RR  B ) )
2524adantl 277 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  ->  A  <RR  B ) )
26 brxp 4654 . . . . . . . . . . 11  |-  ( A ( { -oo }  X.  RR ) B  <->  ( A  e.  { -oo }  /\  B  e.  RR )
)
2726simplbi 274 . . . . . . . . . 10  |-  ( A ( { -oo }  X.  RR ) B  ->  A  e.  { -oo }
)
28 elsni 3609 . . . . . . . . . 10  |-  ( A  e.  { -oo }  ->  A  = -oo )
2927, 28syl 14 . . . . . . . . 9  |-  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo )
3029a1i 9 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  = -oo ) )
31 renemnf 7996 . . . . . . . . 9  |-  ( A  e.  RR  ->  A  =/= -oo )
3231neneqd 2368 . . . . . . . 8  |-  ( A  e.  RR  ->  -.  A  = -oo )
33 pm2.24 621 . . . . . . . 8  |-  ( A  = -oo  ->  ( -.  A  = -oo  ->  A  <RR  B ) )
3430, 32, 33syl6ci 1445 . . . . . . 7  |-  ( A  e.  RR  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3534adantr 276 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( { -oo }  X.  RR ) B  ->  A  <RR  B ) )
3625, 35jaod 717 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A ( ( RR  u.  { -oo } )  X.  { +oo } ) B  \/  A ( { -oo }  X.  RR ) B )  ->  A  <RR  B ) )
3715, 36biimtrid 152 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B  ->  A  <RR  B ) )
3814, 37jaod 717 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B )  ->  A  <RR  B ) )
394, 38biimtrid 152 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <RR  B ) )
40123adant3 1017 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  <->  ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B ) ) )
4140ibir 177 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B )
4241orcd 733 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  ( A { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) } B  \/  A ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) ) B ) )
4342, 4sylibr 134 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <RR  B )  ->  A  <  B )
44433expia 1205 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <RR  B  ->  A  <  B ) )
4539, 44impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  A 
<RR  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    u. cun 3127   {csn 3591   class class class wbr 4000   {copab 4060    X. cxp 4621   RRcr 7801    <RR cltrr 7806   +oocpnf 7979   -oocmnf 7980    < clt 7982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-xp 4629  df-pnf 7984  df-mnf 7985  df-ltxr 7987
This theorem is referenced by:  axltirr  8014  axltwlin  8015  axlttrn  8016  axltadd  8017  axapti  8018  axmulgt0  8019  axsuploc  8020  0lt1  8074  recexre  8525  recexgt0  8527  remulext1  8546  arch  9162  caucvgrelemcau  10973  caucvgre  10974
  Copyright terms: Public domain W3C validator