| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxrlt | Unicode version | ||
| Description: The standard less-than
|
| Ref | Expression |
|---|---|
| ltxrlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr 8186 |
. . . . 5
| |
| 2 | 1 | breqi 4089 |
. . . 4
|
| 3 | brun 4135 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | eleq1 2292 |
. . . . . . 7
| |
| 6 | breq1 4086 |
. . . . . . 7
| |
| 7 | 5, 6 | 3anbi13d 1348 |
. . . . . 6
|
| 8 | eleq1 2292 |
. . . . . . 7
| |
| 9 | breq2 4087 |
. . . . . . 7
| |
| 10 | 8, 9 | 3anbi23d 1349 |
. . . . . 6
|
| 11 | eqid 2229 |
. . . . . 6
| |
| 12 | 7, 10, 11 | brabg 4357 |
. . . . 5
|
| 13 | simp3 1023 |
. . . . 5
| |
| 14 | 12, 13 | biimtrdi 163 |
. . . 4
|
| 15 | brun 4135 |
. . . . 5
| |
| 16 | brxp 4750 |
. . . . . . . . . . 11
| |
| 17 | 16 | simprbi 275 |
. . . . . . . . . 10
|
| 18 | elsni 3684 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | renepnf 8194 |
. . . . . . . . 9
| |
| 22 | 21 | neneqd 2421 |
. . . . . . . 8
|
| 23 | pm2.24 624 |
. . . . . . . 8
| |
| 24 | 20, 22, 23 | syl6ci 1488 |
. . . . . . 7
|
| 25 | 24 | adantl 277 |
. . . . . 6
|
| 26 | brxp 4750 |
. . . . . . . . . . 11
| |
| 27 | 26 | simplbi 274 |
. . . . . . . . . 10
|
| 28 | elsni 3684 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | 29 | a1i 9 |
. . . . . . . 8
|
| 31 | renemnf 8195 |
. . . . . . . . 9
| |
| 32 | 31 | neneqd 2421 |
. . . . . . . 8
|
| 33 | pm2.24 624 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | syl6ci 1488 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 25, 35 | jaod 722 |
. . . . 5
|
| 37 | 15, 36 | biimtrid 152 |
. . . 4
|
| 38 | 14, 37 | jaod 722 |
. . 3
|
| 39 | 4, 38 | biimtrid 152 |
. 2
|
| 40 | 12 | 3adant3 1041 |
. . . . . 6
|
| 41 | 40 | ibir 177 |
. . . . 5
|
| 42 | 41 | orcd 738 |
. . . 4
|
| 43 | 42, 4 | sylibr 134 |
. . 3
|
| 44 | 43 | 3expia 1229 |
. 2
|
| 45 | 39, 44 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 |
| This theorem is referenced by: axltirr 8213 axltwlin 8214 axlttrn 8215 axltadd 8216 axapti 8217 axmulgt0 8218 axsuploc 8219 0lt1 8273 recexre 8725 recexgt0 8727 remulext1 8746 arch 9366 caucvgrelemcau 11491 caucvgre 11492 |
| Copyright terms: Public domain | W3C validator |