| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxrlt | Unicode version | ||
| Description: The standard less-than
|
| Ref | Expression |
|---|---|
| ltxrlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr 8066 |
. . . . 5
| |
| 2 | 1 | breqi 4039 |
. . . 4
|
| 3 | brun 4084 |
. . . 4
| |
| 4 | 2, 3 | bitri 184 |
. . 3
|
| 5 | eleq1 2259 |
. . . . . . 7
| |
| 6 | breq1 4036 |
. . . . . . 7
| |
| 7 | 5, 6 | 3anbi13d 1325 |
. . . . . 6
|
| 8 | eleq1 2259 |
. . . . . . 7
| |
| 9 | breq2 4037 |
. . . . . . 7
| |
| 10 | 8, 9 | 3anbi23d 1326 |
. . . . . 6
|
| 11 | eqid 2196 |
. . . . . 6
| |
| 12 | 7, 10, 11 | brabg 4303 |
. . . . 5
|
| 13 | simp3 1001 |
. . . . 5
| |
| 14 | 12, 13 | biimtrdi 163 |
. . . 4
|
| 15 | brun 4084 |
. . . . 5
| |
| 16 | brxp 4694 |
. . . . . . . . . . 11
| |
| 17 | 16 | simprbi 275 |
. . . . . . . . . 10
|
| 18 | elsni 3640 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 19 | a1i 9 |
. . . . . . . 8
|
| 21 | renepnf 8074 |
. . . . . . . . 9
| |
| 22 | 21 | neneqd 2388 |
. . . . . . . 8
|
| 23 | pm2.24 622 |
. . . . . . . 8
| |
| 24 | 20, 22, 23 | syl6ci 1456 |
. . . . . . 7
|
| 25 | 24 | adantl 277 |
. . . . . 6
|
| 26 | brxp 4694 |
. . . . . . . . . . 11
| |
| 27 | 26 | simplbi 274 |
. . . . . . . . . 10
|
| 28 | elsni 3640 |
. . . . . . . . . 10
| |
| 29 | 27, 28 | syl 14 |
. . . . . . . . 9
|
| 30 | 29 | a1i 9 |
. . . . . . . 8
|
| 31 | renemnf 8075 |
. . . . . . . . 9
| |
| 32 | 31 | neneqd 2388 |
. . . . . . . 8
|
| 33 | pm2.24 622 |
. . . . . . . 8
| |
| 34 | 30, 32, 33 | syl6ci 1456 |
. . . . . . 7
|
| 35 | 34 | adantr 276 |
. . . . . 6
|
| 36 | 25, 35 | jaod 718 |
. . . . 5
|
| 37 | 15, 36 | biimtrid 152 |
. . . 4
|
| 38 | 14, 37 | jaod 718 |
. . 3
|
| 39 | 4, 38 | biimtrid 152 |
. 2
|
| 40 | 12 | 3adant3 1019 |
. . . . . 6
|
| 41 | 40 | ibir 177 |
. . . . 5
|
| 42 | 41 | orcd 734 |
. . . 4
|
| 43 | 42, 4 | sylibr 134 |
. . 3
|
| 44 | 43 | 3expia 1207 |
. 2
|
| 45 | 39, 44 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: axltirr 8093 axltwlin 8094 axlttrn 8095 axltadd 8096 axapti 8097 axmulgt0 8098 axsuploc 8099 0lt1 8153 recexre 8605 recexgt0 8607 remulext1 8626 arch 9246 caucvgrelemcau 11145 caucvgre 11146 |
| Copyright terms: Public domain | W3C validator |