ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzp1 Unicode version

Theorem hashfzp1 11046
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( B  -  A ) )

Proof of Theorem hashfzp1
StepHypRef Expression
1 eluzel2 9727 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 9731 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 zdceq 9522 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  B )
41, 2, 3syl2anc 411 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  -> DECID  A  =  B
)
5 exmiddc 841 . . 3  |-  (DECID  A  =  B  ->  ( A  =  B  \/  -.  A  =  B )
)
64, 5syl 14 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  =  B  \/  -.  A  =  B )
)
7 hash0 11018 . . . . 5  |-  ( `  (/) )  =  0
8 eluzelre 9732 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
98ltp1d 9077 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  <  ( B  +  1 ) )
10 peano2z 9482 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
1110ancri 324 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
( B  +  1 )  e.  ZZ  /\  B  e.  ZZ )
)
12 fzn 10238 . . . . . . . 8  |-  ( ( ( B  +  1 )  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  ( B  +  1 )  <-> 
( ( B  + 
1 ) ... B
)  =  (/) ) )
132, 11, 123syl 17 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  <  ( B  +  1 )  <->  ( ( B  +  1 ) ... B )  =  (/) ) )
149, 13mpbid 147 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  +  1 ) ... B )  =  (/) )
1514fveq2d 5631 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( B  +  1 ) ... B ) )  =  ( `  (/) ) )
162zcnd 9570 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
1716subidd 8445 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  B )  =  0 )
187, 15, 173eqtr4a 2288 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( B  +  1 ) ... B ) )  =  ( B  -  B ) )
19 oveq1 6008 . . . . . . 7  |-  ( A  =  B  ->  ( A  +  1 )  =  ( B  + 
1 ) )
2019oveq1d 6016 . . . . . 6  |-  ( A  =  B  ->  (
( A  +  1 ) ... B )  =  ( ( B  +  1 ) ... B ) )
2120fveq2d 5631 . . . . 5  |-  ( A  =  B  ->  ( `  ( ( A  + 
1 ) ... B
) )  =  ( `  ( ( B  + 
1 ) ... B
) ) )
22 oveq2 6009 . . . . 5  |-  ( A  =  B  ->  ( B  -  A )  =  ( B  -  B ) )
2321, 22eqeq12d 2244 . . . 4  |-  ( A  =  B  ->  (
( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A
)  <->  ( `  ( ( B  +  1 ) ... B ) )  =  ( B  -  B ) ) )
2418, 23imbitrrid 156 . . 3  |-  ( A  =  B  ->  ( B  e.  ( ZZ>= `  A )  ->  ( `  ( ( A  + 
1 ) ... B
) )  =  ( B  -  A ) ) )
25 uzp1 9756 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  \/  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
26 pm2.24 624 . . . . . . . . . 10  |-  ( A  =  B  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1
) ) ) )
2726eqcoms 2232 . . . . . . . . 9  |-  ( B  =  A  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1
) ) ) )
28 ax-1 6 . . . . . . . . 9  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
2927, 28jaoi 721 . . . . . . . 8  |-  ( ( B  =  A  \/  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
3025, 29syl 14 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
3130impcom 125 . . . . . 6  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  B  e.  (
ZZ>= `  ( A  + 
1 ) ) )
32 hashfz 11043 . . . . . 6  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( ( B  -  ( A  +  1 ) )  +  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( ( B  -  ( A  + 
1 ) )  +  1 ) )
341zcnd 9570 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
35 1cnd 8162 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
3616, 34, 35nppcan2d 8483 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  ( A  +  1 ) )  +  1 )  =  ( B  -  A
) )
3736adantl 277 . . . . 5  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( ( B  -  ( A  + 
1 ) )  +  1 )  =  ( B  -  A ) )
3833, 37eqtrd 2262 . . . 4  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A ) )
3938ex 115 . . 3  |-  ( -.  A  =  B  -> 
( B  e.  (
ZZ>= `  A )  -> 
( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A
) ) )
4024, 39jaoi 721 . 2  |-  ( ( A  =  B  \/  -.  A  =  B
)  ->  ( B  e.  ( ZZ>= `  A )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A ) ) )
416, 40mpcom 36 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( B  -  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   (/)c0 3491   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002    < clt 8181    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204  ♯chash 10997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-ihash 10998
This theorem is referenced by:  2lgslem1  15770
  Copyright terms: Public domain W3C validator