| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashfzp1 | Unicode version | ||
| Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.) |
| Ref | Expression |
|---|---|
| hashfzp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 9727 |
. . . 4
| |
| 2 | eluzelz 9731 |
. . . 4
| |
| 3 | zdceq 9522 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . 3
|
| 5 | exmiddc 841 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | hash0 11018 |
. . . . 5
| |
| 8 | eluzelre 9732 |
. . . . . . . 8
| |
| 9 | 8 | ltp1d 9077 |
. . . . . . 7
|
| 10 | peano2z 9482 |
. . . . . . . . 9
| |
| 11 | 10 | ancri 324 |
. . . . . . . 8
|
| 12 | fzn 10238 |
. . . . . . . 8
| |
| 13 | 2, 11, 12 | 3syl 17 |
. . . . . . 7
|
| 14 | 9, 13 | mpbid 147 |
. . . . . 6
|
| 15 | 14 | fveq2d 5631 |
. . . . 5
|
| 16 | 2 | zcnd 9570 |
. . . . . 6
|
| 17 | 16 | subidd 8445 |
. . . . 5
|
| 18 | 7, 15, 17 | 3eqtr4a 2288 |
. . . 4
|
| 19 | oveq1 6008 |
. . . . . . 7
| |
| 20 | 19 | oveq1d 6016 |
. . . . . 6
|
| 21 | 20 | fveq2d 5631 |
. . . . 5
|
| 22 | oveq2 6009 |
. . . . 5
| |
| 23 | 21, 22 | eqeq12d 2244 |
. . . 4
|
| 24 | 18, 23 | imbitrrid 156 |
. . 3
|
| 25 | uzp1 9756 |
. . . . . . . 8
| |
| 26 | pm2.24 624 |
. . . . . . . . . 10
| |
| 27 | 26 | eqcoms 2232 |
. . . . . . . . 9
|
| 28 | ax-1 6 |
. . . . . . . . 9
| |
| 29 | 27, 28 | jaoi 721 |
. . . . . . . 8
|
| 30 | 25, 29 | syl 14 |
. . . . . . 7
|
| 31 | 30 | impcom 125 |
. . . . . 6
|
| 32 | hashfz 11043 |
. . . . . 6
| |
| 33 | 31, 32 | syl 14 |
. . . . 5
|
| 34 | 1 | zcnd 9570 |
. . . . . . 7
|
| 35 | 1cnd 8162 |
. . . . . . 7
| |
| 36 | 16, 34, 35 | nppcan2d 8483 |
. . . . . 6
|
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | 33, 37 | eqtrd 2262 |
. . . 4
|
| 39 | 38 | ex 115 |
. . 3
|
| 40 | 24, 39 | jaoi 721 |
. 2
|
| 41 | 6, 40 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-ihash 10998 |
| This theorem is referenced by: 2lgslem1 15770 |
| Copyright terms: Public domain | W3C validator |