ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfzp1 Unicode version

Theorem hashfzp1 10737
Description: Value of the numeric cardinality of a (possibly empty) integer range. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
hashfzp1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( B  -  A ) )

Proof of Theorem hashfzp1
StepHypRef Expression
1 eluzel2 9471 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  ZZ )
2 eluzelz 9475 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  ZZ )
3 zdceq 9266 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  =  B )
41, 2, 3syl2anc 409 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  -> DECID  A  =  B
)
5 exmiddc 826 . . 3  |-  (DECID  A  =  B  ->  ( A  =  B  \/  -.  A  =  B )
)
64, 5syl 14 . 2  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A  =  B  \/  -.  A  =  B )
)
7 hash0 10710 . . . . 5  |-  ( `  (/) )  =  0
8 eluzelre 9476 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  RR )
98ltp1d 8825 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  <  ( B  +  1 ) )
10 peano2z 9227 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  ( B  +  1 )  e.  ZZ )
1110ancri 322 . . . . . . . 8  |-  ( B  e.  ZZ  ->  (
( B  +  1 )  e.  ZZ  /\  B  e.  ZZ )
)
12 fzn 9977 . . . . . . . 8  |-  ( ( ( B  +  1 )  e.  ZZ  /\  B  e.  ZZ )  ->  ( B  <  ( B  +  1 )  <-> 
( ( B  + 
1 ) ... B
)  =  (/) ) )
132, 11, 123syl 17 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  <  ( B  +  1 )  <->  ( ( B  +  1 ) ... B )  =  (/) ) )
149, 13mpbid 146 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  +  1 ) ... B )  =  (/) )
1514fveq2d 5490 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( B  +  1 ) ... B ) )  =  ( `  (/) ) )
162zcnd 9314 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  B  e.  CC )
1716subidd 8197 . . . . 5  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  -  B )  =  0 )
187, 15, 173eqtr4a 2225 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( B  +  1 ) ... B ) )  =  ( B  -  B ) )
19 oveq1 5849 . . . . . . 7  |-  ( A  =  B  ->  ( A  +  1 )  =  ( B  + 
1 ) )
2019oveq1d 5857 . . . . . 6  |-  ( A  =  B  ->  (
( A  +  1 ) ... B )  =  ( ( B  +  1 ) ... B ) )
2120fveq2d 5490 . . . . 5  |-  ( A  =  B  ->  ( `  ( ( A  + 
1 ) ... B
) )  =  ( `  ( ( B  + 
1 ) ... B
) ) )
22 oveq2 5850 . . . . 5  |-  ( A  =  B  ->  ( B  -  A )  =  ( B  -  B ) )
2321, 22eqeq12d 2180 . . . 4  |-  ( A  =  B  ->  (
( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A
)  <->  ( `  ( ( B  +  1 ) ... B ) )  =  ( B  -  B ) ) )
2418, 23syl5ibr 155 . . 3  |-  ( A  =  B  ->  ( B  e.  ( ZZ>= `  A )  ->  ( `  ( ( A  + 
1 ) ... B
) )  =  ( B  -  A ) ) )
25 uzp1 9499 . . . . . . . 8  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( B  =  A  \/  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
26 pm2.24 611 . . . . . . . . . 10  |-  ( A  =  B  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1
) ) ) )
2726eqcoms 2168 . . . . . . . . 9  |-  ( B  =  A  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1
) ) ) )
28 ax-1 6 . . . . . . . . 9  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
2927, 28jaoi 706 . . . . . . . 8  |-  ( ( B  =  A  \/  B  e.  ( ZZ>= `  ( A  +  1
) ) )  -> 
( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
3025, 29syl 14 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( -.  A  =  B  ->  B  e.  ( ZZ>= `  ( A  +  1 ) ) ) )
3130impcom 124 . . . . . 6  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  B  e.  (
ZZ>= `  ( A  + 
1 ) ) )
32 hashfz 10734 . . . . . 6  |-  ( B  e.  ( ZZ>= `  ( A  +  1 ) )  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( ( B  -  ( A  +  1 ) )  +  1 ) )
3331, 32syl 14 . . . . 5  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( ( B  -  ( A  + 
1 ) )  +  1 ) )
341zcnd 9314 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  A  e.  CC )
35 1cnd 7915 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  A
)  ->  1  e.  CC )
3616, 34, 35nppcan2d 8235 . . . . . 6  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( ( B  -  ( A  +  1 ) )  +  1 )  =  ( B  -  A
) )
3736adantl 275 . . . . 5  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( ( B  -  ( A  + 
1 ) )  +  1 )  =  ( B  -  A ) )
3833, 37eqtrd 2198 . . . 4  |-  ( ( -.  A  =  B  /\  B  e.  (
ZZ>= `  A ) )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A ) )
3938ex 114 . . 3  |-  ( -.  A  =  B  -> 
( B  e.  (
ZZ>= `  A )  -> 
( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A
) ) )
4024, 39jaoi 706 . 2  |-  ( ( A  =  B  \/  -.  A  =  B
)  ->  ( B  e.  ( ZZ>= `  A )  ->  ( `  ( ( A  +  1 ) ... B ) )  =  ( B  -  A ) ) )
416, 40mpcom 36 1  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( `  (
( A  +  1 ) ... B ) )  =  ( B  -  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    = wceq 1343    e. wcel 2136   (/)c0 3409   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    + caddc 7756    < clt 7933    - cmin 8069   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ♯chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-ihash 10689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator