ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritric Unicode version

Theorem sotritric 4372
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
Hypotheses
Ref Expression
sotritric.or  |-  R  Or  A
sotritric.tri  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Assertion
Ref Expression
sotritric  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotritric
StepHypRef Expression
1 sotritric.or . . 3  |-  R  Or  A
2 sotricim 4371 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
31, 2mpan 424 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
4 sotritric.tri . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
5 3orass 984 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
6 ax-1 6 . . . . 5  |-  ( B R C  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
7 pm2.24 622 . . . . 5  |-  ( ( B  =  C  \/  C R B )  -> 
( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
86, 7jaoi 718 . . . 4  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
95, 8sylbi 121 . . 3  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
104, 9syl 14 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
113, 10impbid 129 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    \/ w3o 980    = wceq 1373    e. wcel 2176   class class class wbr 4045    Or wor 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-po 4344  df-iso 4345
This theorem is referenced by:  nqtric  7514
  Copyright terms: Public domain W3C validator