ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritric Unicode version

Theorem sotritric 4415
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 28-Sep-2019.)
Hypotheses
Ref Expression
sotritric.or  |-  R  Or  A
sotritric.tri  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Assertion
Ref Expression
sotritric  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )

Proof of Theorem sotritric
StepHypRef Expression
1 sotritric.or . . 3  |-  R  Or  A
2 sotricim 4414 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
31, 2mpan 424 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  ->  -.  ( B  =  C  \/  C R B ) ) )
4 sotritric.tri . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
5 3orass 1005 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
6 ax-1 6 . . . . 5  |-  ( B R C  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
7 pm2.24 624 . . . . 5  |-  ( ( B  =  C  \/  C R B )  -> 
( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
86, 7jaoi 721 . . . 4  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
95, 8sylbi 121 . . 3  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
104, 9syl 14 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( -.  ( B  =  C  \/  C R B )  ->  B R C ) )
113, 10impbid 129 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    \/ w3o 1001    = wceq 1395    e. wcel 2200   class class class wbr 4083    Or wor 4386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-po 4387  df-iso 4388
This theorem is referenced by:  nqtric  7586
  Copyright terms: Public domain W3C validator