ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qltnle Unicode version

Theorem qltnle 10216
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
qltnle  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
)

Proof of Theorem qltnle
StepHypRef Expression
1 qre 9598 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  RR )
2 qre 9598 . . . . 5  |-  ( A  e.  QQ  ->  A  e.  RR )
3 lenlt 8007 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <_  A  <->  -.  A  <  B ) )
41, 2, 3syl2anr 290 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <_  A  <->  -.  A  <  B ) )
54biimpd 144 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <_  A  ->  -.  A  <  B
) )
65con2d 624 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  ->  -.  B  <_  A
) )
7 qtri3or 10213 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  \/  A  =  B  \/  B  <  A ) )
8 ax-1 6 . . . . 5  |-  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B ) )
98a1i 9 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
10 eqcom 2177 . . . . . . . . 9  |-  ( A  =  B  <->  B  =  A )
11 eqle 8023 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B  =  A )  ->  B  <_  A )
1210, 11sylan2b 287 . . . . . . . 8  |-  ( ( B  e.  RR  /\  A  =  B )  ->  B  <_  A )
1312ex 115 . . . . . . 7  |-  ( B  e.  RR  ->  ( A  =  B  ->  B  <_  A ) )
1413adantl 277 . . . . . 6  |-  ( ( A  e.  QQ  /\  B  e.  RR )  ->  ( A  =  B  ->  B  <_  A
) )
151, 14sylan2 286 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  ->  B  <_  A
) )
16 pm2.24 621 . . . . 5  |-  ( B  <_  A  ->  ( -.  B  <_  A  ->  A  <  B ) )
1715, 16syl6 33 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =  B  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
18 ltle 8019 . . . . . 6  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  <  A  ->  B  <_  A )
)
191, 2, 18syl2anr 290 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <  A  ->  B  <_  A )
)
2019, 16syl6 33 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( B  <  A  ->  ( -.  B  <_  A  ->  A  <  B
) ) )
219, 17, 203jaod 1304 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( ( A  < 
B  \/  A  =  B  \/  B  < 
A )  ->  ( -.  B  <_  A  ->  A  <  B ) ) )
227, 21mpd 13 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( -.  B  <_  A  ->  A  <  B
) )
236, 22impbid 129 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <->  -.  B  <_  A )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    = wceq 1353    e. wcel 2146   class class class wbr 3998   RRcr 7785    < clt 7966    <_ cle 7967   QQcq 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-n0 9150  df-z 9227  df-q 9593  df-rp 9625
This theorem is referenced by:  flqlt  10253
  Copyright terms: Public domain W3C validator