Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rext | Unicode version |
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
rext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 3615 | . . 3 | |
2 | vex 2733 | . . . . 5 | |
3 | 2 | snex 4171 | . . . 4 |
4 | eleq2 2234 | . . . . 5 | |
5 | eleq2 2234 | . . . . 5 | |
6 | 4, 5 | imbi12d 233 | . . . 4 |
7 | 3, 6 | spcv 2824 | . . 3 |
8 | 1, 7 | mpi 15 | . 2 |
9 | velsn 3600 | . . 3 | |
10 | equcomi 1697 | . . 3 | |
11 | 9, 10 | sylbi 120 | . 2 |
12 | 8, 11 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wceq 1348 wcel 2141 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |