ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext Unicode version

Theorem rext 4277
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3675 . . 3  |-  x  e. 
{ x }
2 vex 2779 . . . . 5  |-  x  e. 
_V
32snex 4245 . . . 4  |-  { x }  e.  _V
4 eleq2 2271 . . . . 5  |-  ( z  =  { x }  ->  ( x  e.  z  <-> 
x  e.  { x } ) )
5 eleq2 2271 . . . . 5  |-  ( z  =  { x }  ->  ( y  e.  z  <-> 
y  e.  { x } ) )
64, 5imbi12d 234 . . . 4  |-  ( z  =  { x }  ->  ( ( x  e.  z  ->  y  e.  z )  <->  ( x  e.  { x }  ->  y  e.  { x }
) ) )
73, 6spcv 2874 . . 3  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  (
x  e.  { x }  ->  y  e.  {
x } ) )
81, 7mpi 15 . 2  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  y  e.  { x } )
9 velsn 3660 . . 3  |-  ( y  e.  { x }  <->  y  =  x )
10 equcomi 1728 . . 3  |-  ( y  =  x  ->  x  =  y )
119, 10sylbi 121 . 2  |-  ( y  e.  { x }  ->  x  =  y )
128, 11syl 14 1  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373    e. wcel 2178   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator