| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rext | Unicode version | ||
| Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| rext | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vsnid 3654 | 
. . 3
 | |
| 2 | vex 2766 | 
. . . . 5
 | |
| 3 | 2 | snex 4218 | 
. . . 4
 | 
| 4 | eleq2 2260 | 
. . . . 5
 | |
| 5 | eleq2 2260 | 
. . . . 5
 | |
| 6 | 4, 5 | imbi12d 234 | 
. . . 4
 | 
| 7 | 3, 6 | spcv 2858 | 
. . 3
 | 
| 8 | 1, 7 | mpi 15 | 
. 2
 | 
| 9 | velsn 3639 | 
. . 3
 | |
| 10 | equcomi 1718 | 
. . 3
 | |
| 11 | 9, 10 | sylbi 121 | 
. 2
 | 
| 12 | 8, 11 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |