ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext Unicode version

Theorem rext 4209
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3621 . . 3  |-  x  e. 
{ x }
2 vex 2738 . . . . 5  |-  x  e. 
_V
32snex 4180 . . . 4  |-  { x }  e.  _V
4 eleq2 2239 . . . . 5  |-  ( z  =  { x }  ->  ( x  e.  z  <-> 
x  e.  { x } ) )
5 eleq2 2239 . . . . 5  |-  ( z  =  { x }  ->  ( y  e.  z  <-> 
y  e.  { x } ) )
64, 5imbi12d 234 . . . 4  |-  ( z  =  { x }  ->  ( ( x  e.  z  ->  y  e.  z )  <->  ( x  e.  { x }  ->  y  e.  { x }
) ) )
73, 6spcv 2829 . . 3  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  (
x  e.  { x }  ->  y  e.  {
x } ) )
81, 7mpi 15 . 2  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  y  e.  { x } )
9 velsn 3606 . . 3  |-  ( y  e.  { x }  <->  y  =  x )
10 equcomi 1702 . . 3  |-  ( y  =  x  ->  x  =  y )
119, 10sylbi 121 . 2  |-  ( y  e.  { x }  ->  x  =  y )
128, 11syl 14 1  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2146   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator