ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rext Unicode version

Theorem rext 4301
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.)
Assertion
Ref Expression
rext  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Distinct variable group:    x, y, z

Proof of Theorem rext
StepHypRef Expression
1 vsnid 3698 . . 3  |-  x  e. 
{ x }
2 vex 2802 . . . . 5  |-  x  e. 
_V
32snex 4269 . . . 4  |-  { x }  e.  _V
4 eleq2 2293 . . . . 5  |-  ( z  =  { x }  ->  ( x  e.  z  <-> 
x  e.  { x } ) )
5 eleq2 2293 . . . . 5  |-  ( z  =  { x }  ->  ( y  e.  z  <-> 
y  e.  { x } ) )
64, 5imbi12d 234 . . . 4  |-  ( z  =  { x }  ->  ( ( x  e.  z  ->  y  e.  z )  <->  ( x  e.  { x }  ->  y  e.  { x }
) ) )
73, 6spcv 2897 . . 3  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  (
x  e.  { x }  ->  y  e.  {
x } ) )
81, 7mpi 15 . 2  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  y  e.  { x } )
9 velsn 3683 . . 3  |-  ( y  e.  { x }  <->  y  =  x )
10 equcomi 1750 . . 3  |-  ( y  =  x  ->  x  =  y )
119, 10sylbi 121 . 2  |-  ( y  e.  { x }  ->  x  =  y )
128, 11syl 14 1  |-  ( A. z ( x  e.  z  ->  y  e.  z )  ->  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395    e. wcel 2200   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator