Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rext | Unicode version |
Description: A theorem similar to extensionality, requiring the existence of a singleton. Exercise 8 of [TakeutiZaring] p. 16. (Contributed by NM, 10-Aug-1993.) |
Ref | Expression |
---|---|
rext |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 3621 | . . 3 | |
2 | vex 2738 | . . . . 5 | |
3 | 2 | snex 4180 | . . . 4 |
4 | eleq2 2239 | . . . . 5 | |
5 | eleq2 2239 | . . . . 5 | |
6 | 4, 5 | imbi12d 234 | . . . 4 |
7 | 3, 6 | spcv 2829 | . . 3 |
8 | 1, 7 | mpi 15 | . 2 |
9 | velsn 3606 | . . 3 | |
10 | equcomi 1702 | . . 3 | |
11 | 9, 10 | sylbi 121 | . 2 |
12 | 8, 11 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wceq 1353 wcel 2146 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |