ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi Unicode version

Theorem prssi 3826
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3825 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )
21ibi 176 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    C_ wss 3197   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673
This theorem is referenced by:  prssd  3827  tpssi  3837  prelpwi  4300  onun2  4582  onintexmid  4665  nnregexmid  4713  rex2dom  6971  en2eqpr  7069  m1expcl2  10783  m1expcl  10784  minmax  11741  xrminmax  11776  1idssfct  12637  subrngin  14177  subrgin  14208  lssincl  14349  unopn  14679  umgrbien  15910  bdop  16238  012of  16357  isomninnlem  16398  trilpolemisumle  16406  trilpolemeq1  16408  trilpolemlt1  16409  iswomninnlem  16417  iswomni0  16419  ismkvnnlem  16420  nconstwlpolemgt0  16432
  Copyright terms: Public domain W3C validator