| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prssi | Unicode version | ||
| Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| prssi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssg 3780 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: prssd 3782 tpssi 3790 prelpwi 4248 onun2 4527 onintexmid 4610 nnregexmid 4658 en2eqpr 6977 m1expcl2 10670 m1expcl 10671 minmax 11412 xrminmax 11447 1idssfct 12308 subrngin 13845 subrgin 13876 lssincl 14017 unopn 14325 bdop 15605 012of 15724 isomninnlem 15761 trilpolemisumle 15769 trilpolemeq1 15771 trilpolemlt1 15772 iswomninnlem 15780 iswomni0 15782 ismkvnnlem 15783 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |