ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi Unicode version

Theorem prssi 3714
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3713 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )
21ibi 175 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128    C_ wss 3102   {cpr 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567
This theorem is referenced by:  tpssi  3722  prelpwi  4174  onun2  4449  onintexmid  4532  nnregexmid  4580  en2eqpr  6852  m1expcl2  10441  m1expcl  10442  minmax  11129  xrminmax  11162  1idssfct  11991  unopn  12403  bdop  13450  012of  13567  isomninnlem  13601  trilpolemisumle  13609  trilpolemeq1  13611  trilpolemlt1  13612  iswomninnlem  13620  iswomni0  13622  ismkvnnlem  13623  nconstwlpolemgt0  13634
  Copyright terms: Public domain W3C validator