ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi Unicode version

Theorem prssi 3776
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3775 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )
21ibi 176 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    C_ wss 3153   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625
This theorem is referenced by:  prssd  3777  tpssi  3785  prelpwi  4243  onun2  4522  onintexmid  4605  nnregexmid  4653  en2eqpr  6963  m1expcl2  10632  m1expcl  10633  minmax  11373  xrminmax  11408  1idssfct  12253  subrngin  13709  subrgin  13740  lssincl  13881  unopn  14173  bdop  15367  012of  15486  isomninnlem  15520  trilpolemisumle  15528  trilpolemeq1  15530  trilpolemlt1  15531  iswomninnlem  15539  iswomni0  15541  ismkvnnlem  15542  nconstwlpolemgt0  15554
  Copyright terms: Public domain W3C validator