ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prssi Unicode version

Theorem prssi 3738
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.)
Assertion
Ref Expression
prssi  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )

Proof of Theorem prssi
StepHypRef Expression
1 prssg 3737 . 2  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( ( A  e.  C  /\  B  e.  C )  <->  { A ,  B }  C_  C
) )
21ibi 175 1  |-  ( ( A  e.  C  /\  B  e.  C )  ->  { A ,  B }  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141    C_ wss 3121   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590
This theorem is referenced by:  tpssi  3746  prelpwi  4199  onun2  4474  onintexmid  4557  nnregexmid  4605  en2eqpr  6885  m1expcl2  10498  m1expcl  10499  minmax  11193  xrminmax  11228  1idssfct  12069  unopn  12797  bdop  13910  012of  14028  isomninnlem  14062  trilpolemisumle  14070  trilpolemeq1  14072  trilpolemlt1  14073  iswomninnlem  14081  iswomni0  14083  ismkvnnlem  14084  nconstwlpolemgt0  14095
  Copyright terms: Public domain W3C validator