ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prelpwi GIF version

Theorem prelpwi 4300
Description: A pair of two sets belongs to the power class of a class containing those two sets. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
prelpwi ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)

Proof of Theorem prelpwi
StepHypRef Expression
1 prssi 3826 . 2 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
2 prexg 4295 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ V)
3 elpwg 3657 . . 3 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶))
42, 3syl 14 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∈ 𝒫 𝐶 ↔ {𝐴, 𝐵} ⊆ 𝐶))
51, 4mpbird 167 1 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} ∈ 𝒫 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator