ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnz GIF version

Theorem prnz 3715
Description: A pair containing a set is not empty. (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 3699 . 2 𝐴 ∈ {𝐴, 𝐵}
3 ne0i 3430 . 2 (𝐴 ∈ {𝐴, 𝐵} → {𝐴, 𝐵} ≠ ∅)
42, 3ax-mp 5 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2148  wne 2347  Vcvv 2738  c0 3423  {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-v 2740  df-dif 3132  df-un 3134  df-nul 3424  df-sn 3599  df-pr 3600
This theorem is referenced by:  prnzg  3717
  Copyright terms: Public domain W3C validator