| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prnz | GIF version | ||
| Description: A pair containing a set is not empty. It is also inhabited (see prm 3770). (Contributed by NM, 9-Apr-1994.) |
| Ref | Expression |
|---|---|
| prnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | prid1 3752 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
| 3 | ne0i 3478 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵} → {𝐴, 𝐵} ≠ ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ≠ wne 2380 Vcvv 2779 ∅c0 3471 {cpr 3647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-v 2781 df-dif 3179 df-un 3181 df-nul 3472 df-sn 3652 df-pr 3653 |
| This theorem is referenced by: prnzg 3771 |
| Copyright terms: Public domain | W3C validator |