ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnz GIF version

Theorem prnz 3769
Description: A pair containing a set is not empty. It is also inhabited (see prm 3770). (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 3752 . 2 𝐴 ∈ {𝐴, 𝐵}
3 ne0i 3478 . 2 (𝐴 ∈ {𝐴, 𝐵} → {𝐴, 𝐵} ≠ ∅)
42, 3ax-mp 5 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2180  wne 2380  Vcvv 2779  c0 3471  {cpr 3647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-v 2781  df-dif 3179  df-un 3181  df-nul 3472  df-sn 3652  df-pr 3653
This theorem is referenced by:  prnzg  3771
  Copyright terms: Public domain W3C validator