ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnz GIF version

Theorem prnz 3744
Description: A pair containing a set is not empty. It is also inhabited (see prm 3745). (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1 𝐴 ∈ V
Assertion
Ref Expression
prnz {𝐴, 𝐵} ≠ ∅

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3 𝐴 ∈ V
21prid1 3728 . 2 𝐴 ∈ {𝐴, 𝐵}
3 ne0i 3457 . 2 (𝐴 ∈ {𝐴, 𝐵} → {𝐴, 𝐵} ≠ ∅)
42, 3ax-mp 5 1 {𝐴, 𝐵} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2167  wne 2367  Vcvv 2763  c0 3450  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629
This theorem is referenced by:  prnzg  3746
  Copyright terms: Public domain W3C validator