![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prnz | GIF version |
Description: A pair containing a set is not empty. It is also inhabited (see prm 3741). (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prnz | ⊢ {𝐴, 𝐵} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 3724 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | ne0i 3453 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵} → {𝐴, 𝐵} ≠ ∅) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ {𝐴, 𝐵} ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ∅c0 3446 {cpr 3619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-v 2762 df-dif 3155 df-un 3157 df-nul 3447 df-sn 3624 df-pr 3625 |
This theorem is referenced by: prnzg 3742 |
Copyright terms: Public domain | W3C validator |