ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 Unicode version

Theorem prid1 3749
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1  |-  A  e. 
_V
Assertion
Ref Expression
prid1  |-  A  e. 
{ A ,  B }

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2  |-  A  e. 
_V
2 prid1g 3747 . 2  |-  ( A  e.  _V  ->  A  e.  { A ,  B } )
31, 2ax-mp 5 1  |-  A  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650
This theorem is referenced by:  prid2  3750  prnz  3766  preqr1  3822  preq12b  3824  prel12  3825  opi1  4294  opeluu  4515  onsucelsucexmidlem1  4594  regexmidlem1  4599  reg2exmidlema  4600  opthreg  4622  ordtri2or2exmid  4637  ontri2orexmidim  4638  dmrnssfld  4960  funopg  5324  acexmidlemb  5959  0lt2o  6550  2dom  6921  unfiexmid  7041  djuss  7198  exmidomni  7270  pr2cv1  7329  exmidonfinlem  7332  exmidaclem  7351  reelprrecn  8095  pnfxr  8160  sup3exmid  9065  fun2dmnop0  11029  fnpr2ob  13287  lgsdir2lem3  15622  upgrex  15814  bdop  16010  2o01f  16131  iswomni0  16192
  Copyright terms: Public domain W3C validator