![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid1 | Unicode version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
prid1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | prid1g 3722 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 |
This theorem is referenced by: prid2 3725 prnz 3740 preqr1 3794 preq12b 3796 prel12 3797 opi1 4261 opeluu 4481 onsucelsucexmidlem1 4560 regexmidlem1 4565 reg2exmidlema 4566 opthreg 4588 ordtri2or2exmid 4603 ontri2orexmidim 4604 dmrnssfld 4925 funopg 5288 acexmidlemb 5910 0lt2o 6494 2dom 6859 unfiexmid 6974 djuss 7129 exmidomni 7201 exmidonfinlem 7253 exmidaclem 7268 reelprrecn 8007 pnfxr 8072 sup3exmid 8976 fnpr2ob 12923 lgsdir2lem3 15146 bdop 15367 2o01f 15487 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |