| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 |
|
| Ref | Expression |
|---|---|
| prid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 |
. 2
| |
| 2 | prid1g 3737 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prid2 3740 prnz 3755 preqr1 3809 preq12b 3811 prel12 3812 opi1 4277 opeluu 4498 onsucelsucexmidlem1 4577 regexmidlem1 4582 reg2exmidlema 4583 opthreg 4605 ordtri2or2exmid 4620 ontri2orexmidim 4621 dmrnssfld 4942 funopg 5306 acexmidlemb 5938 0lt2o 6529 2dom 6899 unfiexmid 7017 djuss 7174 exmidomni 7246 exmidonfinlem 7303 exmidaclem 7322 reelprrecn 8062 pnfxr 8127 sup3exmid 9032 fun2dmnop0 10994 fnpr2ob 13205 lgsdir2lem3 15540 bdop 15848 2o01f 15968 iswomni0 16027 |
| Copyright terms: Public domain | W3C validator |