| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 |
|
| Ref | Expression |
|---|---|
| prid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 |
. 2
| |
| 2 | prid1g 3770 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prid2 3773 prnz 3790 preqr1 3846 preq12b 3848 prel12 3849 opi1 4318 opeluu 4541 onsucelsucexmidlem1 4620 regexmidlem1 4625 reg2exmidlema 4626 opthreg 4648 ordtri2or2exmid 4663 ontri2orexmidim 4664 dmrnssfld 4987 funopg 5352 acexmidlemb 5993 0lt2o 6587 2dom 6958 unfiexmid 7080 djuss 7237 exmidomni 7309 pr2cv1 7368 exmidonfinlem 7371 exmidaclem 7390 reelprrecn 8134 pnfxr 8199 sup3exmid 9104 fun2dmnop0 11069 fnpr2ob 13373 lgsdir2lem3 15709 upgrex 15903 bdop 16238 2o01f 16358 iswomni0 16419 |
| Copyright terms: Public domain | W3C validator |