ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 Unicode version

Theorem prid1 3728
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1  |-  A  e. 
_V
Assertion
Ref Expression
prid1  |-  A  e. 
{ A ,  B }

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2  |-  A  e. 
_V
2 prid1g 3726 . 2  |-  ( A  e.  _V  ->  A  e.  { A ,  B } )
31, 2ax-mp 5 1  |-  A  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629
This theorem is referenced by:  prid2  3729  prnz  3744  preqr1  3798  preq12b  3800  prel12  3801  opi1  4265  opeluu  4485  onsucelsucexmidlem1  4564  regexmidlem1  4569  reg2exmidlema  4570  opthreg  4592  ordtri2or2exmid  4607  ontri2orexmidim  4608  dmrnssfld  4929  funopg  5292  acexmidlemb  5914  0lt2o  6499  2dom  6864  unfiexmid  6979  djuss  7136  exmidomni  7208  exmidonfinlem  7260  exmidaclem  7275  reelprrecn  8014  pnfxr  8079  sup3exmid  8984  fnpr2ob  12983  lgsdir2lem3  15271  bdop  15521  2o01f  15641  iswomni0  15695
  Copyright terms: Public domain W3C validator