![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid1 | Unicode version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid1.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
prid1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid1.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | prid1g 3723 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 |
This theorem is referenced by: prid2 3726 prnz 3741 preqr1 3795 preq12b 3797 prel12 3798 opi1 4262 opeluu 4482 onsucelsucexmidlem1 4561 regexmidlem1 4566 reg2exmidlema 4567 opthreg 4589 ordtri2or2exmid 4604 ontri2orexmidim 4605 dmrnssfld 4926 funopg 5289 acexmidlemb 5911 0lt2o 6496 2dom 6861 unfiexmid 6976 djuss 7131 exmidomni 7203 exmidonfinlem 7255 exmidaclem 7270 reelprrecn 8009 pnfxr 8074 sup3exmid 8978 fnpr2ob 12926 lgsdir2lem3 15187 bdop 15437 2o01f 15557 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |