ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 Unicode version

Theorem prid1 3699
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1  |-  A  e. 
_V
Assertion
Ref Expression
prid1  |-  A  e. 
{ A ,  B }

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2  |-  A  e. 
_V
2 prid1g 3697 . 2  |-  ( A  e.  _V  ->  A  e.  { A ,  B } )
31, 2ax-mp 5 1  |-  A  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2738   {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600
This theorem is referenced by:  prid2  3700  prnz  3715  preqr1  3769  preq12b  3771  prel12  3772  opi1  4233  opeluu  4451  onsucelsucexmidlem1  4528  regexmidlem1  4533  reg2exmidlema  4534  opthreg  4556  ordtri2or2exmid  4571  ontri2orexmidim  4572  dmrnssfld  4891  funopg  5251  acexmidlemb  5867  0lt2o  6442  2dom  6805  unfiexmid  6917  djuss  7069  exmidomni  7140  exmidonfinlem  7192  exmidaclem  7207  reelprrecn  7946  pnfxr  8010  sup3exmid  8914  fnpr2ob  12759  lgsdir2lem3  14434  bdop  14630  2o01f  14749  iswomni0  14802
  Copyright terms: Public domain W3C validator