| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid1 | Unicode version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid1.1 |
|
| Ref | Expression |
|---|---|
| prid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid1.1 |
. 2
| |
| 2 | prid1g 3747 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: prid2 3750 prnz 3766 preqr1 3822 preq12b 3824 prel12 3825 opi1 4294 opeluu 4515 onsucelsucexmidlem1 4594 regexmidlem1 4599 reg2exmidlema 4600 opthreg 4622 ordtri2or2exmid 4637 ontri2orexmidim 4638 dmrnssfld 4960 funopg 5324 acexmidlemb 5959 0lt2o 6550 2dom 6921 unfiexmid 7041 djuss 7198 exmidomni 7270 pr2cv1 7329 exmidonfinlem 7332 exmidaclem 7351 reelprrecn 8095 pnfxr 8160 sup3exmid 9065 fun2dmnop0 11029 fnpr2ob 13287 lgsdir2lem3 15622 upgrex 15814 bdop 16010 2o01f 16131 iswomni0 16192 |
| Copyright terms: Public domain | W3C validator |