ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid1 Unicode version

Theorem prid1 3739
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid1.1  |-  A  e. 
_V
Assertion
Ref Expression
prid1  |-  A  e. 
{ A ,  B }

Proof of Theorem prid1
StepHypRef Expression
1 prid1.1 . 2  |-  A  e. 
_V
2 prid1g 3737 . 2  |-  ( A  e.  _V  ->  A  e.  { A ,  B } )
31, 2ax-mp 5 1  |-  A  e. 
{ A ,  B }
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  prid2  3740  prnz  3755  preqr1  3809  preq12b  3811  prel12  3812  opi1  4276  opeluu  4497  onsucelsucexmidlem1  4576  regexmidlem1  4581  reg2exmidlema  4582  opthreg  4604  ordtri2or2exmid  4619  ontri2orexmidim  4620  dmrnssfld  4941  funopg  5305  acexmidlemb  5936  0lt2o  6527  2dom  6897  unfiexmid  7015  djuss  7172  exmidomni  7244  exmidonfinlem  7301  exmidaclem  7320  reelprrecn  8060  pnfxr  8125  sup3exmid  9030  fun2dmnop0  10992  fnpr2ob  13172  lgsdir2lem3  15507  bdop  15811  2o01f  15931  iswomni0  15990
  Copyright terms: Public domain W3C validator