ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwel Unicode version

Theorem pwel 4196
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 3817 . . 3  |-  ( A  e.  B  ->  A  C_ 
U. B )
2 sspwb 4194 . . 3  |-  ( A 
C_  U. B  <->  ~P A  C_ 
~P U. B )
31, 2sylib 121 . 2  |-  ( A  e.  B  ->  ~P A  C_  ~P U. B
)
4 pwexg 4159 . . 3  |-  ( A  e.  B  ->  ~P A  e.  _V )
5 elpwg 3567 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
64, 5syl 14 . 2  |-  ( A  e.  B  ->  ( ~P A  e.  ~P ~P U. B  <->  ~P A  C_ 
~P U. B ) )
73, 6mpbird 166 1  |-  ( A  e.  B  ->  ~P A  e.  ~P ~P U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-uni 3790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator