| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3629 |
. . 3
| |
| 2 | 1 | eleq1d 2276 |
. 2
|
| 3 | vpwex 4239 |
. 2
| |
| 4 | 2, 3 | vtoclg 2838 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: pwexd 4241 abssexg 4242 pwex 4243 snexg 4244 pwel 4280 uniexb 4538 xpexg 4807 fabexg 5485 mapex 6764 pmvalg 6769 fopwdom 6958 ssenen 6973 restid2 13195 toponsspwpwg 14609 tgdom 14659 distop 14672 epttop 14677 cldval 14686 ntrfval 14687 clsfval 14688 neifval 14727 neif 14728 neival 14730 |
| Copyright terms: Public domain | W3C validator |