ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexg Unicode version

Theorem pwexg 4181
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
pwexg  |-  ( A  e.  V  ->  ~P A  e.  _V )

Proof of Theorem pwexg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 3579 . . 3  |-  ( x  =  A  ->  ~P x  =  ~P A
)
21eleq1d 2246 . 2  |-  ( x  =  A  ->  ( ~P x  e.  _V  <->  ~P A  e.  _V )
)
3 vpwex 4180 . 2  |-  ~P x  e.  _V
42, 3vtoclg 2798 1  |-  ( A  e.  V  ->  ~P A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2738   ~Pcpw 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-in 3136  df-ss 3143  df-pw 3578
This theorem is referenced by:  pwexd  4182  abssexg  4183  pwex  4184  snexg  4185  pwel  4219  uniexb  4474  xpexg  4741  fabexg  5404  mapex  6654  pmvalg  6659  fopwdom  6836  ssenen  6851  restid2  12697  toponsspwpwg  13525  tgdom  13575  distop  13588  epttop  13593  cldval  13602  ntrfval  13603  clsfval  13604  neifval  13643  neif  13644  neival  13646
  Copyright terms: Public domain W3C validator