| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| pwexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pweq 3608 | 
. . 3
 | |
| 2 | 1 | eleq1d 2265 | 
. 2
 | 
| 3 | vpwex 4212 | 
. 2
 | |
| 4 | 2, 3 | vtoclg 2824 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: pwexd 4214 abssexg 4215 pwex 4216 snexg 4217 pwel 4251 uniexb 4508 xpexg 4777 fabexg 5445 mapex 6713 pmvalg 6718 fopwdom 6897 ssenen 6912 restid2 12919 toponsspwpwg 14258 tgdom 14308 distop 14321 epttop 14326 cldval 14335 ntrfval 14336 clsfval 14337 neifval 14376 neif 14377 neival 14379 | 
| Copyright terms: Public domain | W3C validator |