| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3619 |
. . 3
| |
| 2 | 1 | eleq1d 2274 |
. 2
|
| 3 | vpwex 4223 |
. 2
| |
| 4 | 2, 3 | vtoclg 2833 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: pwexd 4225 abssexg 4226 pwex 4227 snexg 4228 pwel 4262 uniexb 4520 xpexg 4789 fabexg 5463 mapex 6741 pmvalg 6746 fopwdom 6933 ssenen 6948 restid2 13080 toponsspwpwg 14494 tgdom 14544 distop 14557 epttop 14562 cldval 14571 ntrfval 14572 clsfval 14573 neifval 14612 neif 14613 neival 14615 |
| Copyright terms: Public domain | W3C validator |