| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3652 |
. . 3
| |
| 2 | 1 | eleq1d 2298 |
. 2
|
| 3 | vpwex 4262 |
. 2
| |
| 4 | 2, 3 | vtoclg 2861 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pwexd 4264 abssexg 4265 pwex 4266 snexg 4267 pwel 4303 uniexb 4563 xpexg 4832 fabexg 5512 mapex 6799 pmvalg 6804 fopwdom 6993 ssenen 7008 restid2 13276 toponsspwpwg 14690 tgdom 14740 distop 14753 epttop 14758 cldval 14767 ntrfval 14768 clsfval 14769 neifval 14808 neif 14809 neival 14811 |
| Copyright terms: Public domain | W3C validator |