Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwexg | Unicode version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 3562 | . . 3 | |
2 | 1 | eleq1d 2235 | . 2 |
3 | vpwex 4158 | . 2 | |
4 | 2, 3 | vtoclg 2786 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cvv 2726 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: pwexd 4160 abssexg 4161 pwex 4162 snexg 4163 pwel 4196 uniexb 4451 xpexg 4718 fabexg 5375 mapex 6620 pmvalg 6625 fopwdom 6802 ssenen 6817 restid2 12565 toponsspwpwg 12660 tgdom 12712 distop 12725 epttop 12730 cldval 12739 ntrfval 12740 clsfval 12741 neifval 12780 neif 12781 neival 12783 |
Copyright terms: Public domain | W3C validator |