Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwel | GIF version |
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) |
Ref | Expression |
---|---|
pwel | ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 3833 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
2 | sspwb 4210 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) | |
3 | 1, 2 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) |
4 | pwexg 4175 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ V) | |
5 | elpwg 3580 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵)) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵)) |
7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2146 Vcvv 2735 ⊆ wss 3127 𝒫 cpw 3572 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-uni 3806 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |