| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwel | GIF version | ||
| Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) |
| Ref | Expression |
|---|---|
| pwel | ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 3867 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
| 2 | sspwb 4249 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) | |
| 3 | 1, 2 | sylib 122 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) |
| 4 | pwexg 4213 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ V) | |
| 5 | elpwg 3613 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵)) |
| 7 | 3, 6 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-uni 3840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |