ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwel GIF version

Theorem pwel 4203
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 3824 . . 3 (𝐴𝐵𝐴 𝐵)
2 sspwb 4201 . . 3 (𝐴 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2sylib 121 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
4 pwexg 4166 . . 3 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
5 elpwg 3574 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
64, 5syl 14 . 2 (𝐴𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
73, 6mpbird 166 1 (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141  Vcvv 2730  wss 3121  𝒫 cpw 3566   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-uni 3797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator