ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwel GIF version

Theorem pwel 4247
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 3863 . . 3 (𝐴𝐵𝐴 𝐵)
2 sspwb 4245 . . 3 (𝐴 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2sylib 122 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
4 pwexg 4209 . . 3 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
5 elpwg 3609 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
64, 5syl 14 . 2 (𝐴𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
73, 6mpbird 167 1 (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2164  Vcvv 2760  wss 3153  𝒫 cpw 3601   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator