ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr Unicode version

Theorem pwtr 4248
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr  |-  ( Tr  A  <->  Tr  ~P A
)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4246 . . 3  |-  U. ~P A  =  A
21sseq1i 3205 . 2  |-  ( U. ~P A  C_  ~P A  <->  A 
C_  ~P A )
3 df-tr 4128 . 2  |-  ( Tr 
~P A  <->  U. ~P A  C_ 
~P A )
4 dftr4 4132 . 2  |-  ( Tr  A  <->  A  C_  ~P A
)
52, 3, 43bitr4ri 213 1  |-  ( Tr  A  <->  Tr  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3153   ~Pcpw 3601   U.cuni 3835   Tr wtr 4127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836  df-tr 4128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator