ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr Unicode version

Theorem pwtr 4252
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr  |-  ( Tr  A  <->  Tr  ~P A
)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4250 . . 3  |-  U. ~P A  =  A
21sseq1i 3209 . 2  |-  ( U. ~P A  C_  ~P A  <->  A 
C_  ~P A )
3 df-tr 4132 . 2  |-  ( Tr 
~P A  <->  U. ~P A  C_ 
~P A )
4 dftr4 4136 . 2  |-  ( Tr  A  <->  A  C_  ~P A
)
52, 3, 43bitr4ri 213 1  |-  ( Tr  A  <->  Tr  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3157   ~Pcpw 3605   U.cuni 3839   Tr wtr 4131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840  df-tr 4132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator