ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr Unicode version

Theorem pwtr 4264
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr  |-  ( Tr  A  <->  Tr  ~P A
)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4262 . . 3  |-  U. ~P A  =  A
21sseq1i 3219 . 2  |-  ( U. ~P A  C_  ~P A  <->  A 
C_  ~P A )
3 df-tr 4144 . 2  |-  ( Tr 
~P A  <->  U. ~P A  C_ 
~P A )
4 dftr4 4148 . 2  |-  ( Tr  A  <->  A  C_  ~P A
)
52, 3, 43bitr4ri 213 1  |-  ( Tr  A  <->  Tr  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   Tr wtr 4143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-uni 3851  df-tr 4144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator