ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr Unicode version

Theorem pwtr 4305
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr  |-  ( Tr  A  <->  Tr  ~P A
)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 4303 . . 3  |-  U. ~P A  =  A
21sseq1i 3250 . 2  |-  ( U. ~P A  C_  ~P A  <->  A 
C_  ~P A )
3 df-tr 4183 . 2  |-  ( Tr 
~P A  <->  U. ~P A  C_ 
~P A )
4 dftr4 4187 . 2  |-  ( Tr  A  <->  A  C_  ~P A
)
52, 3, 43bitr4ri 213 1  |-  ( Tr  A  <->  Tr  ~P A
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   Tr wtr 4182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3889  df-tr 4183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator