Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwtr | Unicode version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 4190 | . . 3 | |
2 | 1 | sseq1i 3164 | . 2 |
3 | df-tr 4076 | . 2 | |
4 | dftr4 4080 | . 2 | |
5 | 2, 3, 4 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wss 3112 cpw 3554 cuni 3784 wtr 4075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-14 2138 ax-ext 2146 ax-sep 4095 ax-pow 4148 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-v 2724 df-in 3118 df-ss 3125 df-pw 3556 df-sn 3577 df-uni 3785 df-tr 4076 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |