ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqi Unicode version

Theorem pweqi 3620
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.)
Hypothesis
Ref Expression
pweqi.1  |-  A  =  B
Assertion
Ref Expression
pweqi  |-  ~P A  =  ~P B

Proof of Theorem pweqi
StepHypRef Expression
1 pweqi.1 . 2  |-  A  =  B
2 pweq 3619 . 2  |-  ( A  =  B  ->  ~P A  =  ~P B
)
31, 2ax-mp 5 1  |-  ~P A  =  ~P B
Colors of variables: wff set class
Syntax hints:    = wceq 1373   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  exmidpw  7007  exmidpweq  7008  pw1dom2  7341  pw1ne1  7343  mnfnre  8117  fmelpw1o  15779
  Copyright terms: Public domain W3C validator