| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweqd | Unicode version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 |
|
| Ref | Expression |
|---|---|
| pweqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 |
. 2
| |
| 2 | pweq 3629 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: pmvalg 6769 issubm 13419 issubg 13624 subgex 13627 issubrng 14076 issubrg 14098 lsssetm 14233 lspfval 14265 lsppropd 14309 sraval 14314 basis1 14634 baspartn 14637 cldval 14686 ntrfval 14687 clsfval 14688 neifval 14727 mopnfss 15034 isuhgrm 15782 isushgrm 15783 isuhgropm 15792 uhgrun 15797 isupgren 15806 upgrop 15815 isumgren 15816 upgrun 15832 umgrun 15834 |
| Copyright terms: Public domain | W3C validator |