ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqd Unicode version

Theorem pweqd 3621
Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.)
Hypothesis
Ref Expression
pweqd.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
pweqd  |-  ( ph  ->  ~P A  =  ~P B )

Proof of Theorem pweqd
StepHypRef Expression
1 pweqd.1 . 2  |-  ( ph  ->  A  =  B )
2 pweq 3619 . 2  |-  ( A  =  B  ->  ~P A  =  ~P B
)
31, 2syl 14 1  |-  ( ph  ->  ~P A  =  ~P B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  pmvalg  6748  issubm  13337  issubg  13542  subgex  13545  issubrng  13994  issubrg  14016  lsssetm  14151  lspfval  14183  lsppropd  14227  sraval  14232  basis1  14552  baspartn  14555  cldval  14604  ntrfval  14605  clsfval  14606  neifval  14645  mopnfss  14952
  Copyright terms: Public domain W3C validator