| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweqd | Unicode version | ||
| Description: Equality deduction for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqd.1 |
|
| Ref | Expression |
|---|---|
| pweqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqd.1 |
. 2
| |
| 2 | pweq 3608 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-pw 3607 |
| This theorem is referenced by: pmvalg 6718 issubm 13104 issubg 13303 subgex 13306 issubrng 13755 issubrg 13777 lsssetm 13912 lspfval 13944 lsppropd 13988 sraval 13993 basis1 14283 baspartn 14286 cldval 14335 ntrfval 14336 clsfval 14337 neifval 14376 mopnfss 14683 |
| Copyright terms: Public domain | W3C validator |