| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweqi | GIF version | ||
| Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| pweqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | pweq 3652 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: exmidpw 7066 exmidpweq 7067 pw1dom2 7408 pw1ne1 7410 fmelpw1o 7428 mnfnre 8185 umgrpredgv 15939 |
| Copyright terms: Public domain | W3C validator |