![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pweqi | GIF version |
Description: Equality inference for power class. (Contributed by NM, 27-Nov-2013.) |
Ref | Expression |
---|---|
pweqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
pweqi | ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | pweq 3460 | . 2 ⊢ (𝐴 = 𝐵 → 𝒫 𝐴 = 𝒫 𝐵) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝒫 𝐴 = 𝒫 𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 𝒫 cpw 3457 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-in 3027 df-ss 3034 df-pw 3459 |
This theorem is referenced by: exmidpw 6731 mnfnre 7680 pw1dom2 12775 |
Copyright terms: Public domain | W3C validator |