![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1dom2 | Unicode version |
Description: The power set of ![]() ![]() |
Ref | Expression |
---|---|
pw1dom2 |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nep0 4000 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0ex 3966 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | p0ex 4023 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | pr2ne 6818 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mp2an 417 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | mpbir 144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | ensymi 6497 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 3 | pwex 4018 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | pwpw0ss 3648 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | ssdomg 6493 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 8, 9, 10 | mp2 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | df1o2 6194 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 12 | pweqi 3433 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 11, 13 | breqtrri 3870 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | endomtr 6505 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 7, 14, 15 | mp2an 417 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-3or 925 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-opab 3900 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-1o 6181 df-2o 6182 df-er 6290 df-en 6456 df-dom 6457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |