ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1dom2 Unicode version

Theorem pw1dom2 7339
Description: The power set of  1o dominates  2o. Also see pwpw0ss 3845 which is similar. (Contributed by Jim Kingdon, 21-Sep-2022.)
Assertion
Ref Expression
pw1dom2  |-  2o  ~<_  ~P 1o

Proof of Theorem pw1dom2
StepHypRef Expression
1 0nep0 4209 . . . 4  |-  (/)  =/=  { (/)
}
2 0ex 4171 . . . . 5  |-  (/)  e.  _V
3 p0ex 4232 . . . . 5  |-  { (/) }  e.  _V
4 pr2ne 7300 . . . . 5  |-  ( (
(/)  e.  _V  /\  { (/)
}  e.  _V )  ->  ( { (/) ,  { (/)
} }  ~~  2o  <->  (/)  =/=  { (/) } ) )
52, 3, 4mp2an 426 . . . 4  |-  ( {
(/) ,  { (/) } }  ~~  2o  <->  (/)  =/=  { (/) } )
61, 5mpbir 146 . . 3  |-  { (/) ,  { (/) } }  ~~  2o
76ensymi 6874 . 2  |-  2o  ~~  {
(/) ,  { (/) } }
83pwex 4227 . . . 4  |-  ~P { (/)
}  e.  _V
9 pwpw0ss 3845 . . . 4  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
10 ssdomg 6870 . . . 4  |-  ( ~P { (/) }  e.  _V  ->  ( { (/) ,  { (/)
} }  C_  ~P { (/) }  ->  { (/) ,  { (/) } }  ~<_  ~P { (/)
} ) )
118, 9, 10mp2 16 . . 3  |-  { (/) ,  { (/) } }  ~<_  ~P { (/)
}
12 df1o2 6515 . . . 4  |-  1o  =  { (/) }
1312pweqi 3620 . . 3  |-  ~P 1o  =  ~P { (/) }
1411, 13breqtrri 4071 . 2  |-  { (/) ,  { (/) } }  ~<_  ~P 1o
15 endomtr 6882 . 2  |-  ( ( 2o  ~~  { (/) ,  { (/) } }  /\  {
(/) ,  { (/) } }  ~<_  ~P 1o )  ->  2o  ~<_  ~P 1o )
167, 14, 15mp2an 426 1  |-  2o  ~<_  ~P 1o
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176    =/= wne 2376   _Vcvv 2772    C_ wss 3166   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634   class class class wbr 4044   1oc1o 6495   2oc2o 6496    ~~ cen 6825    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-dom 6829
This theorem is referenced by:  pwf1oexmid  15936
  Copyright terms: Public domain W3C validator