Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fmelpw1o Unicode version

Theorem fmelpw1o 15419
Description: With a formula  ph one can associate an element of  ~P 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than T. and F., by nndc 852, which translate to  1o and  (/) respectively by iftrue 3566 and iffalse 3569, giving pwtrufal 15609).

As proved in if0ab 15418, the associated element of  ~P 1o is the extension, in  ~P 1o, of the formula  ph. (Contributed by BJ, 15-Aug-2024.)

Assertion
Ref Expression
fmelpw1o  |-  if (
ph ,  1o ,  (/) )  e.  ~P 1o

Proof of Theorem fmelpw1o
StepHypRef Expression
1 1oex 6482 . . 3  |-  1o  e.  _V
2 0ex 4160 . . 3  |-  (/)  e.  _V
31, 2ifelpwun 4518 . 2  |-  if (
ph ,  1o ,  (/) )  e.  ~P ( 1o  u.  (/) )
4 un0 3484 . . 3  |-  ( 1o  u.  (/) )  =  1o
54pweqi 3609 . 2  |-  ~P ( 1o  u.  (/) )  =  ~P 1o
63, 5eleqtri 2271 1  |-  if (
ph ,  1o ,  (/) )  e.  ~P 1o
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    u. cun 3155   (/)c0 3450   ifcif 3561   ~Pcpw 3605   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474
This theorem is referenced by:  bj-charfun  15420
  Copyright terms: Public domain W3C validator