Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fmelpw1o Unicode version

Theorem fmelpw1o 15243
Description: With a formula  ph one can associate an element of  ~P 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than T. and F., by nndc 852, which translate to  1o and  (/) respectively by iftrue 3562 and iffalse 3565, giving pwtrufal 15433).

As proved in if0ab 15242, the associated element of  ~P 1o is the extension, in  ~P 1o, of the formula  ph. (Contributed by BJ, 15-Aug-2024.)

Assertion
Ref Expression
fmelpw1o  |-  if (
ph ,  1o ,  (/) )  e.  ~P 1o

Proof of Theorem fmelpw1o
StepHypRef Expression
1 1oex 6468 . . 3  |-  1o  e.  _V
2 0ex 4156 . . 3  |-  (/)  e.  _V
31, 2ifelpwun 4512 . 2  |-  if (
ph ,  1o ,  (/) )  e.  ~P ( 1o  u.  (/) )
4 un0 3480 . . 3  |-  ( 1o  u.  (/) )  =  1o
54pweqi 3605 . 2  |-  ~P ( 1o  u.  (/) )  =  ~P 1o
63, 5eleqtri 2268 1  |-  if (
ph ,  1o ,  (/) )  e.  ~P 1o
Colors of variables: wff set class
Syntax hints:    e. wcel 2164    u. cun 3151   (/)c0 3446   ifcif 3557   ~Pcpw 3601   1oc1o 6453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4395  df-on 4397  df-suc 4400  df-1o 6460
This theorem is referenced by:  bj-charfun  15244
  Copyright terms: Public domain W3C validator