| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| exmidpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6514 |
. . . . 5
| |
| 2 | p0ex 4231 |
. . . . 5
| |
| 3 | 1, 2 | eqeltri 2277 |
. . . 4
|
| 4 | 3 | pwex 4226 |
. . 3
|
| 5 | exmid01 4241 |
. . . . . . . . 9
| |
| 6 | 5 | biimpi 120 |
. . . . . . . 8
|
| 7 | 6 | 19.21bi 1580 |
. . . . . . 7
|
| 8 | 1 | pweqi 3619 |
. . . . . . . . 9
|
| 9 | 8 | eleq2i 2271 |
. . . . . . . 8
|
| 10 | velpw 3622 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitri 184 |
. . . . . . 7
|
| 12 | vex 2774 |
. . . . . . . 8
| |
| 13 | 12 | elpr 3653 |
. . . . . . 7
|
| 14 | 7, 11, 13 | 3imtr4g 205 |
. . . . . 6
|
| 15 | 14 | ssrdv 3198 |
. . . . 5
|
| 16 | pwpw0ss 3844 |
. . . . . . 7
| |
| 17 | 16, 8 | sseqtrri 3227 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 15, 18 | eqssd 3209 |
. . . 4
|
| 20 | df2o2 6516 |
. . . 4
| |
| 21 | 19, 20 | eqtr4di 2255 |
. . 3
|
| 22 | eqeng 6856 |
. . 3
| |
| 23 | 4, 21, 22 | mpsyl 65 |
. 2
|
| 24 | 0nep0 4208 |
. . . . . . . 8
| |
| 25 | 0ex 4170 |
. . . . . . . . . . 11
| |
| 26 | 25, 2 | prss 3788 |
. . . . . . . . . 10
|
| 27 | 17, 26 | mpbir 146 |
. . . . . . . . 9
|
| 28 | en2eqpr 7003 |
. . . . . . . . . 10
| |
| 29 | 28 | 3expb 1206 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpan2 425 |
. . . . . . . 8
|
| 31 | 24, 30 | mpi 15 |
. . . . . . 7
|
| 32 | 31 | eleq2d 2274 |
. . . . . 6
|
| 33 | 32, 11, 13 | 3bitr3g 222 |
. . . . 5
|
| 34 | 33 | biimpd 144 |
. . . 4
|
| 35 | 34 | alrimiv 1896 |
. . 3
|
| 36 | 35, 5 | sylibr 134 |
. 2
|
| 37 | 23, 36 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-exmid 4238 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1o 6501 df-2o 6502 df-en 6827 |
| This theorem is referenced by: exmidpw2en 7008 pwf1oexmid 15869 |
| Copyright terms: Public domain | W3C validator |