| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of  | 
| Ref | Expression | 
|---|---|
| exmidpw | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df1o2 6487 | 
. . . . 5
 | |
| 2 | p0ex 4221 | 
. . . . 5
 | |
| 3 | 1, 2 | eqeltri 2269 | 
. . . 4
 | 
| 4 | 3 | pwex 4216 | 
. . 3
 | 
| 5 | exmid01 4231 | 
. . . . . . . . 9
 | |
| 6 | 5 | biimpi 120 | 
. . . . . . . 8
 | 
| 7 | 6 | 19.21bi 1572 | 
. . . . . . 7
 | 
| 8 | 1 | pweqi 3609 | 
. . . . . . . . 9
 | 
| 9 | 8 | eleq2i 2263 | 
. . . . . . . 8
 | 
| 10 | velpw 3612 | 
. . . . . . . 8
 | |
| 11 | 9, 10 | bitri 184 | 
. . . . . . 7
 | 
| 12 | vex 2766 | 
. . . . . . . 8
 | |
| 13 | 12 | elpr 3643 | 
. . . . . . 7
 | 
| 14 | 7, 11, 13 | 3imtr4g 205 | 
. . . . . 6
 | 
| 15 | 14 | ssrdv 3189 | 
. . . . 5
 | 
| 16 | pwpw0ss 3834 | 
. . . . . . 7
 | |
| 17 | 16, 8 | sseqtrri 3218 | 
. . . . . 6
 | 
| 18 | 17 | a1i 9 | 
. . . . 5
 | 
| 19 | 15, 18 | eqssd 3200 | 
. . . 4
 | 
| 20 | df2o2 6489 | 
. . . 4
 | |
| 21 | 19, 20 | eqtr4di 2247 | 
. . 3
 | 
| 22 | eqeng 6825 | 
. . 3
 | |
| 23 | 4, 21, 22 | mpsyl 65 | 
. 2
 | 
| 24 | 0nep0 4198 | 
. . . . . . . 8
 | |
| 25 | 0ex 4160 | 
. . . . . . . . . . 11
 | |
| 26 | 25, 2 | prss 3778 | 
. . . . . . . . . 10
 | 
| 27 | 17, 26 | mpbir 146 | 
. . . . . . . . 9
 | 
| 28 | en2eqpr 6968 | 
. . . . . . . . . 10
 | |
| 29 | 28 | 3expb 1206 | 
. . . . . . . . 9
 | 
| 30 | 27, 29 | mpan2 425 | 
. . . . . . . 8
 | 
| 31 | 24, 30 | mpi 15 | 
. . . . . . 7
 | 
| 32 | 31 | eleq2d 2266 | 
. . . . . 6
 | 
| 33 | 32, 11, 13 | 3bitr3g 222 | 
. . . . 5
 | 
| 34 | 33 | biimpd 144 | 
. . . 4
 | 
| 35 | 34 | alrimiv 1888 | 
. . 3
 | 
| 36 | 35, 5 | sylibr 134 | 
. 2
 | 
| 37 | 23, 36 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-exmid 4228 df-id 4328 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-2o 6475 df-en 6800 | 
| This theorem is referenced by: exmidpw2en 6973 pwf1oexmid 15644 | 
| Copyright terms: Public domain | W3C validator |