ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw Unicode version

Theorem exmidpw 6969
Description: Excluded middle is equivalent to the power set of  1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw  |-  (EXMID  <->  ~P 1o  ~~  2o )

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6487 . . . . 5  |-  1o  =  { (/) }
2 p0ex 4221 . . . . 5  |-  { (/) }  e.  _V
31, 2eqeltri 2269 . . . 4  |-  1o  e.  _V
43pwex 4216 . . 3  |-  ~P 1o  e.  _V
5 exmid01 4231 . . . . . . . . 9  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
65biimpi 120 . . . . . . . 8  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
7619.21bi 1572 . . . . . . 7  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
81pweqi 3609 . . . . . . . . 9  |-  ~P 1o  =  ~P { (/) }
98eleq2i 2263 . . . . . . . 8  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
10 velpw 3612 . . . . . . . 8  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
119, 10bitri 184 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
12 vex 2766 . . . . . . . 8  |-  x  e. 
_V
1312elpr 3643 . . . . . . 7  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
147, 11, 133imtr4g 205 . . . . . 6  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1514ssrdv 3189 . . . . 5  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
16 pwpw0ss 3834 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1716, 8sseqtrri 3218 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P 1o
1817a1i 9 . . . . 5  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1915, 18eqssd 3200 . . . 4  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
20 df2o2 6489 . . . 4  |-  2o  =  { (/) ,  { (/) } }
2119, 20eqtr4di 2247 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
22 eqeng 6825 . . 3  |-  ( ~P 1o  e.  _V  ->  ( ~P 1o  =  2o 
->  ~P 1o  ~~  2o ) )
234, 21, 22mpsyl 65 . 2  |-  (EXMID  ->  ~P 1o  ~~  2o )
24 0nep0 4198 . . . . . . . 8  |-  (/)  =/=  { (/)
}
25 0ex 4160 . . . . . . . . . . 11  |-  (/)  e.  _V
2625, 2prss 3778 . . . . . . . . . 10  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
2717, 26mpbir 146 . . . . . . . . 9  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
28 en2eqpr 6968 . . . . . . . . . 10  |-  ( ( ~P 1o  ~~  2o  /\  (/)  e.  ~P 1o  /\  {
(/) }  e.  ~P 1o )  ->  ( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/)
} } ) )
29283expb 1206 . . . . . . . . 9  |-  ( ( ~P 1o  ~~  2o  /\  ( (/)  e.  ~P 1o  /\  { (/) }  e.  ~P 1o ) )  -> 
( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3027, 29mpan2 425 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  (
(/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3124, 30mpi 15 . . . . . . 7  |-  ( ~P 1o  ~~  2o  ->  ~P 1o  =  { (/) ,  { (/) } } )
3231eleq2d 2266 . . . . . 6  |-  ( ~P 1o  ~~  2o  ->  ( x  e.  ~P 1o  <->  x  e.  { (/) ,  { (/)
} } ) )
3332, 11, 133bitr3g 222 . . . . 5  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3433biimpd 144 . . . 4  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3534alrimiv 1888 . . 3  |-  ( ~P 1o  ~~  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3635, 5sylibr 134 . 2  |-  ( ~P 1o  ~~  2o  -> EXMID )
3723, 36impbii 126 1  |-  (EXMID  <->  ~P 1o  ~~  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    C_ wss 3157   (/)c0 3450   ~Pcpw 3605   {csn 3622   {cpr 3623   class class class wbr 4033  EXMIDwem 4227   1oc1o 6467   2oc2o 6468    ~~ cen 6797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-exmid 4228  df-id 4328  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-2o 6475  df-en 6800
This theorem is referenced by:  exmidpw2en  6973  pwf1oexmid  15644
  Copyright terms: Public domain W3C validator