ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw Unicode version

Theorem exmidpw 7004
Description: Excluded middle is equivalent to the power set of  1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw  |-  (EXMID  <->  ~P 1o  ~~  2o )

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6514 . . . . 5  |-  1o  =  { (/) }
2 p0ex 4231 . . . . 5  |-  { (/) }  e.  _V
31, 2eqeltri 2277 . . . 4  |-  1o  e.  _V
43pwex 4226 . . 3  |-  ~P 1o  e.  _V
5 exmid01 4241 . . . . . . . . 9  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
65biimpi 120 . . . . . . . 8  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
7619.21bi 1580 . . . . . . 7  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
81pweqi 3619 . . . . . . . . 9  |-  ~P 1o  =  ~P { (/) }
98eleq2i 2271 . . . . . . . 8  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
10 velpw 3622 . . . . . . . 8  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
119, 10bitri 184 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
12 vex 2774 . . . . . . . 8  |-  x  e. 
_V
1312elpr 3653 . . . . . . 7  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
147, 11, 133imtr4g 205 . . . . . 6  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1514ssrdv 3198 . . . . 5  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
16 pwpw0ss 3844 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1716, 8sseqtrri 3227 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P 1o
1817a1i 9 . . . . 5  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1915, 18eqssd 3209 . . . 4  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
20 df2o2 6516 . . . 4  |-  2o  =  { (/) ,  { (/) } }
2119, 20eqtr4di 2255 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
22 eqeng 6856 . . 3  |-  ( ~P 1o  e.  _V  ->  ( ~P 1o  =  2o 
->  ~P 1o  ~~  2o ) )
234, 21, 22mpsyl 65 . 2  |-  (EXMID  ->  ~P 1o  ~~  2o )
24 0nep0 4208 . . . . . . . 8  |-  (/)  =/=  { (/)
}
25 0ex 4170 . . . . . . . . . . 11  |-  (/)  e.  _V
2625, 2prss 3788 . . . . . . . . . 10  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
2717, 26mpbir 146 . . . . . . . . 9  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
28 en2eqpr 7003 . . . . . . . . . 10  |-  ( ( ~P 1o  ~~  2o  /\  (/)  e.  ~P 1o  /\  {
(/) }  e.  ~P 1o )  ->  ( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/)
} } ) )
29283expb 1206 . . . . . . . . 9  |-  ( ( ~P 1o  ~~  2o  /\  ( (/)  e.  ~P 1o  /\  { (/) }  e.  ~P 1o ) )  -> 
( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3027, 29mpan2 425 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  (
(/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3124, 30mpi 15 . . . . . . 7  |-  ( ~P 1o  ~~  2o  ->  ~P 1o  =  { (/) ,  { (/) } } )
3231eleq2d 2274 . . . . . 6  |-  ( ~P 1o  ~~  2o  ->  ( x  e.  ~P 1o  <->  x  e.  { (/) ,  { (/)
} } ) )
3332, 11, 133bitr3g 222 . . . . 5  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3433biimpd 144 . . . 4  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3534alrimiv 1896 . . 3  |-  ( ~P 1o  ~~  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3635, 5sylibr 134 . 2  |-  ( ~P 1o  ~~  2o  -> EXMID )
3723, 36impbii 126 1  |-  (EXMID  <->  ~P 1o  ~~  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1370    = wceq 1372    e. wcel 2175    =/= wne 2375   _Vcvv 2771    C_ wss 3165   (/)c0 3459   ~Pcpw 3615   {csn 3632   {cpr 3633   class class class wbr 4043  EXMIDwem 4237   1oc1o 6494   2oc2o 6495    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-exmid 4238  df-id 4339  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-2o 6502  df-en 6827
This theorem is referenced by:  exmidpw2en  7008  pwf1oexmid  15869
  Copyright terms: Public domain W3C validator