| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| exmidpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6528 |
. . . . 5
| |
| 2 | p0ex 4240 |
. . . . 5
| |
| 3 | 1, 2 | eqeltri 2279 |
. . . 4
|
| 4 | 3 | pwex 4235 |
. . 3
|
| 5 | exmid01 4250 |
. . . . . . . . 9
| |
| 6 | 5 | biimpi 120 |
. . . . . . . 8
|
| 7 | 6 | 19.21bi 1582 |
. . . . . . 7
|
| 8 | 1 | pweqi 3625 |
. . . . . . . . 9
|
| 9 | 8 | eleq2i 2273 |
. . . . . . . 8
|
| 10 | velpw 3628 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitri 184 |
. . . . . . 7
|
| 12 | vex 2776 |
. . . . . . . 8
| |
| 13 | 12 | elpr 3659 |
. . . . . . 7
|
| 14 | 7, 11, 13 | 3imtr4g 205 |
. . . . . 6
|
| 15 | 14 | ssrdv 3203 |
. . . . 5
|
| 16 | pwpw0ss 3851 |
. . . . . . 7
| |
| 17 | 16, 8 | sseqtrri 3232 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 15, 18 | eqssd 3214 |
. . . 4
|
| 20 | df2o2 6530 |
. . . 4
| |
| 21 | 19, 20 | eqtr4di 2257 |
. . 3
|
| 22 | eqeng 6870 |
. . 3
| |
| 23 | 4, 21, 22 | mpsyl 65 |
. 2
|
| 24 | 0nep0 4217 |
. . . . . . . 8
| |
| 25 | 0ex 4179 |
. . . . . . . . . . 11
| |
| 26 | 25, 2 | prss 3795 |
. . . . . . . . . 10
|
| 27 | 17, 26 | mpbir 146 |
. . . . . . . . 9
|
| 28 | en2eqpr 7019 |
. . . . . . . . . 10
| |
| 29 | 28 | 3expb 1207 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpan2 425 |
. . . . . . . 8
|
| 31 | 24, 30 | mpi 15 |
. . . . . . 7
|
| 32 | 31 | eleq2d 2276 |
. . . . . 6
|
| 33 | 32, 11, 13 | 3bitr3g 222 |
. . . . 5
|
| 34 | 33 | biimpd 144 |
. . . 4
|
| 35 | 34 | alrimiv 1898 |
. . 3
|
| 36 | 35, 5 | sylibr 134 |
. 2
|
| 37 | 23, 36 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-exmid 4247 df-id 4348 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-1o 6515 df-2o 6516 df-en 6841 |
| This theorem is referenced by: exmidpw2en 7024 pwf1oexmid 16077 |
| Copyright terms: Public domain | W3C validator |