Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version |
Description: Excluded middle is equivalent to the power set of having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.) |
Ref | Expression |
---|---|
exmidpw | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6397 | . . . . 5 | |
2 | p0ex 4167 | . . . . 5 | |
3 | 1, 2 | eqeltri 2239 | . . . 4 |
4 | 3 | pwex 4162 | . . 3 |
5 | exmid01 4177 | . . . . . . . . 9 EXMID | |
6 | 5 | biimpi 119 | . . . . . . . 8 EXMID |
7 | 6 | 19.21bi 1546 | . . . . . . 7 EXMID |
8 | 1 | pweqi 3563 | . . . . . . . . 9 |
9 | 8 | eleq2i 2233 | . . . . . . . 8 |
10 | velpw 3566 | . . . . . . . 8 | |
11 | 9, 10 | bitri 183 | . . . . . . 7 |
12 | vex 2729 | . . . . . . . 8 | |
13 | 12 | elpr 3597 | . . . . . . 7 |
14 | 7, 11, 13 | 3imtr4g 204 | . . . . . 6 EXMID |
15 | 14 | ssrdv 3148 | . . . . 5 EXMID |
16 | pwpw0ss 3784 | . . . . . . 7 | |
17 | 16, 8 | sseqtrri 3177 | . . . . . 6 |
18 | 17 | a1i 9 | . . . . 5 EXMID |
19 | 15, 18 | eqssd 3159 | . . . 4 EXMID |
20 | df2o2 6399 | . . . 4 | |
21 | 19, 20 | eqtr4di 2217 | . . 3 EXMID |
22 | eqeng 6732 | . . 3 | |
23 | 4, 21, 22 | mpsyl 65 | . 2 EXMID |
24 | 0nep0 4144 | . . . . . . . 8 | |
25 | 0ex 4109 | . . . . . . . . . . 11 | |
26 | 25, 2 | prss 3729 | . . . . . . . . . 10 |
27 | 17, 26 | mpbir 145 | . . . . . . . . 9 |
28 | en2eqpr 6873 | . . . . . . . . . 10 | |
29 | 28 | 3expb 1194 | . . . . . . . . 9 |
30 | 27, 29 | mpan2 422 | . . . . . . . 8 |
31 | 24, 30 | mpi 15 | . . . . . . 7 |
32 | 31 | eleq2d 2236 | . . . . . 6 |
33 | 32, 11, 13 | 3bitr3g 221 | . . . . 5 |
34 | 33 | biimpd 143 | . . . 4 |
35 | 34 | alrimiv 1862 | . . 3 |
36 | 35, 5 | sylibr 133 | . 2 EXMID |
37 | 23, 36 | impbii 125 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wal 1341 wceq 1343 wcel 2136 wne 2336 cvv 2726 wss 3116 c0 3409 cpw 3559 csn 3576 cpr 3577 class class class wbr 3982 EXMIDwem 4173 c1o 6377 c2o 6378 cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-id 4271 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-en 6707 |
This theorem is referenced by: pwf1oexmid 13889 |
Copyright terms: Public domain | W3C validator |