Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version |
Description: Excluded middle is equivalent to the power set of having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.) |
Ref | Expression |
---|---|
exmidpw | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6420 | . . . . 5 | |
2 | p0ex 4183 | . . . . 5 | |
3 | 1, 2 | eqeltri 2248 | . . . 4 |
4 | 3 | pwex 4178 | . . 3 |
5 | exmid01 4193 | . . . . . . . . 9 EXMID | |
6 | 5 | biimpi 120 | . . . . . . . 8 EXMID |
7 | 6 | 19.21bi 1556 | . . . . . . 7 EXMID |
8 | 1 | pweqi 3576 | . . . . . . . . 9 |
9 | 8 | eleq2i 2242 | . . . . . . . 8 |
10 | velpw 3579 | . . . . . . . 8 | |
11 | 9, 10 | bitri 184 | . . . . . . 7 |
12 | vex 2738 | . . . . . . . 8 | |
13 | 12 | elpr 3610 | . . . . . . 7 |
14 | 7, 11, 13 | 3imtr4g 205 | . . . . . 6 EXMID |
15 | 14 | ssrdv 3159 | . . . . 5 EXMID |
16 | pwpw0ss 3800 | . . . . . . 7 | |
17 | 16, 8 | sseqtrri 3188 | . . . . . 6 |
18 | 17 | a1i 9 | . . . . 5 EXMID |
19 | 15, 18 | eqssd 3170 | . . . 4 EXMID |
20 | df2o2 6422 | . . . 4 | |
21 | 19, 20 | eqtr4di 2226 | . . 3 EXMID |
22 | eqeng 6756 | . . 3 | |
23 | 4, 21, 22 | mpsyl 65 | . 2 EXMID |
24 | 0nep0 4160 | . . . . . . . 8 | |
25 | 0ex 4125 | . . . . . . . . . . 11 | |
26 | 25, 2 | prss 3745 | . . . . . . . . . 10 |
27 | 17, 26 | mpbir 146 | . . . . . . . . 9 |
28 | en2eqpr 6897 | . . . . . . . . . 10 | |
29 | 28 | 3expb 1204 | . . . . . . . . 9 |
30 | 27, 29 | mpan2 425 | . . . . . . . 8 |
31 | 24, 30 | mpi 15 | . . . . . . 7 |
32 | 31 | eleq2d 2245 | . . . . . 6 |
33 | 32, 11, 13 | 3bitr3g 222 | . . . . 5 |
34 | 33 | biimpd 144 | . . . 4 |
35 | 34 | alrimiv 1872 | . . 3 |
36 | 35, 5 | sylibr 134 | . 2 EXMID |
37 | 23, 36 | impbii 126 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wal 1351 wceq 1353 wcel 2146 wne 2345 cvv 2735 wss 3127 c0 3420 cpw 3572 csn 3589 cpr 3590 class class class wbr 3998 EXMIDwem 4189 c1o 6400 c2o 6401 cen 6728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-exmid 4190 df-id 4287 df-suc 4365 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-1o 6407 df-2o 6408 df-en 6731 |
This theorem is referenced by: pwf1oexmid 14318 |
Copyright terms: Public domain | W3C validator |