| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| exmidpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6573 |
. . . . 5
| |
| 2 | p0ex 4271 |
. . . . 5
| |
| 3 | 1, 2 | eqeltri 2302 |
. . . 4
|
| 4 | 3 | pwex 4266 |
. . 3
|
| 5 | exmid01 4281 |
. . . . . . . . 9
| |
| 6 | 5 | biimpi 120 |
. . . . . . . 8
|
| 7 | 6 | 19.21bi 1604 |
. . . . . . 7
|
| 8 | 1 | pweqi 3653 |
. . . . . . . . 9
|
| 9 | 8 | eleq2i 2296 |
. . . . . . . 8
|
| 10 | velpw 3656 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitri 184 |
. . . . . . 7
|
| 12 | vex 2802 |
. . . . . . . 8
| |
| 13 | 12 | elpr 3687 |
. . . . . . 7
|
| 14 | 7, 11, 13 | 3imtr4g 205 |
. . . . . 6
|
| 15 | 14 | ssrdv 3230 |
. . . . 5
|
| 16 | pwpw0ss 3882 |
. . . . . . 7
| |
| 17 | 16, 8 | sseqtrri 3259 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 15, 18 | eqssd 3241 |
. . . 4
|
| 20 | df2o2 6575 |
. . . 4
| |
| 21 | 19, 20 | eqtr4di 2280 |
. . 3
|
| 22 | eqeng 6915 |
. . 3
| |
| 23 | 4, 21, 22 | mpsyl 65 |
. 2
|
| 24 | 0nep0 4248 |
. . . . . . . 8
| |
| 25 | 0ex 4210 |
. . . . . . . . . . 11
| |
| 26 | 25, 2 | prss 3823 |
. . . . . . . . . 10
|
| 27 | 17, 26 | mpbir 146 |
. . . . . . . . 9
|
| 28 | en2eqpr 7065 |
. . . . . . . . . 10
| |
| 29 | 28 | 3expb 1228 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpan2 425 |
. . . . . . . 8
|
| 31 | 24, 30 | mpi 15 |
. . . . . . 7
|
| 32 | 31 | eleq2d 2299 |
. . . . . 6
|
| 33 | 32, 11, 13 | 3bitr3g 222 |
. . . . 5
|
| 34 | 33 | biimpd 144 |
. . . 4
|
| 35 | 34 | alrimiv 1920 |
. . 3
|
| 36 | 35, 5 | sylibr 134 |
. 2
|
| 37 | 23, 36 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-exmid 4278 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1o 6560 df-2o 6561 df-en 6886 |
| This theorem is referenced by: exmidpw2en 7070 pwf1oexmid 16324 |
| Copyright terms: Public domain | W3C validator |