ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpw Unicode version

Theorem exmidpw 6907
Description: Excluded middle is equivalent to the power set of  1o having two elements. Remark of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 30-Jun-2022.)
Assertion
Ref Expression
exmidpw  |-  (EXMID  <->  ~P 1o  ~~  2o )

Proof of Theorem exmidpw
StepHypRef Expression
1 df1o2 6429 . . . . 5  |-  1o  =  { (/) }
2 p0ex 4188 . . . . 5  |-  { (/) }  e.  _V
31, 2eqeltri 2250 . . . 4  |-  1o  e.  _V
43pwex 4183 . . 3  |-  ~P 1o  e.  _V
5 exmid01 4198 . . . . . . . . 9  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
65biimpi 120 . . . . . . . 8  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
7619.21bi 1558 . . . . . . 7  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
81pweqi 3579 . . . . . . . . 9  |-  ~P 1o  =  ~P { (/) }
98eleq2i 2244 . . . . . . . 8  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
10 velpw 3582 . . . . . . . 8  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
119, 10bitri 184 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
12 vex 2740 . . . . . . . 8  |-  x  e. 
_V
1312elpr 3613 . . . . . . 7  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
147, 11, 133imtr4g 205 . . . . . 6  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1514ssrdv 3161 . . . . 5  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
16 pwpw0ss 3804 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1716, 8sseqtrri 3190 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P 1o
1817a1i 9 . . . . 5  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1915, 18eqssd 3172 . . . 4  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
20 df2o2 6431 . . . 4  |-  2o  =  { (/) ,  { (/) } }
2119, 20eqtr4di 2228 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
22 eqeng 6765 . . 3  |-  ( ~P 1o  e.  _V  ->  ( ~P 1o  =  2o 
->  ~P 1o  ~~  2o ) )
234, 21, 22mpsyl 65 . 2  |-  (EXMID  ->  ~P 1o  ~~  2o )
24 0nep0 4165 . . . . . . . 8  |-  (/)  =/=  { (/)
}
25 0ex 4130 . . . . . . . . . . 11  |-  (/)  e.  _V
2625, 2prss 3748 . . . . . . . . . 10  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
2717, 26mpbir 146 . . . . . . . . 9  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
28 en2eqpr 6906 . . . . . . . . . 10  |-  ( ( ~P 1o  ~~  2o  /\  (/)  e.  ~P 1o  /\  {
(/) }  e.  ~P 1o )  ->  ( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/)
} } ) )
29283expb 1204 . . . . . . . . 9  |-  ( ( ~P 1o  ~~  2o  /\  ( (/)  e.  ~P 1o  /\  { (/) }  e.  ~P 1o ) )  -> 
( (/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3027, 29mpan2 425 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  (
(/)  =/=  { (/) }  ->  ~P 1o  =  { (/) ,  { (/) } } ) )
3124, 30mpi 15 . . . . . . 7  |-  ( ~P 1o  ~~  2o  ->  ~P 1o  =  { (/) ,  { (/) } } )
3231eleq2d 2247 . . . . . 6  |-  ( ~P 1o  ~~  2o  ->  ( x  e.  ~P 1o  <->  x  e.  { (/) ,  { (/)
} } ) )
3332, 11, 133bitr3g 222 . . . . 5  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  <->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3433biimpd 144 . . . 4  |-  ( ~P 1o  ~~  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3534alrimiv 1874 . . 3  |-  ( ~P 1o  ~~  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
3635, 5sylibr 134 . 2  |-  ( ~P 1o  ~~  2o  -> EXMID )
3723, 36impbii 126 1  |-  (EXMID  <->  ~P 1o  ~~  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   A.wal 1351    = wceq 1353    e. wcel 2148    =/= wne 2347   _Vcvv 2737    C_ wss 3129   (/)c0 3422   ~Pcpw 3575   {csn 3592   {cpr 3593   class class class wbr 4003  EXMIDwem 4194   1oc1o 6409   2oc2o 6410    ~~ cen 6737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-exmid 4195  df-id 4293  df-suc 4371  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-1o 6416  df-2o 6417  df-en 6740
This theorem is referenced by:  pwf1oexmid  14719
  Copyright terms: Public domain W3C validator