| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpw | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| exmidpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 6496 |
. . . . 5
| |
| 2 | p0ex 4222 |
. . . . 5
| |
| 3 | 1, 2 | eqeltri 2269 |
. . . 4
|
| 4 | 3 | pwex 4217 |
. . 3
|
| 5 | exmid01 4232 |
. . . . . . . . 9
| |
| 6 | 5 | biimpi 120 |
. . . . . . . 8
|
| 7 | 6 | 19.21bi 1572 |
. . . . . . 7
|
| 8 | 1 | pweqi 3610 |
. . . . . . . . 9
|
| 9 | 8 | eleq2i 2263 |
. . . . . . . 8
|
| 10 | velpw 3613 |
. . . . . . . 8
| |
| 11 | 9, 10 | bitri 184 |
. . . . . . 7
|
| 12 | vex 2766 |
. . . . . . . 8
| |
| 13 | 12 | elpr 3644 |
. . . . . . 7
|
| 14 | 7, 11, 13 | 3imtr4g 205 |
. . . . . 6
|
| 15 | 14 | ssrdv 3190 |
. . . . 5
|
| 16 | pwpw0ss 3835 |
. . . . . . 7
| |
| 17 | 16, 8 | sseqtrri 3219 |
. . . . . 6
|
| 18 | 17 | a1i 9 |
. . . . 5
|
| 19 | 15, 18 | eqssd 3201 |
. . . 4
|
| 20 | df2o2 6498 |
. . . 4
| |
| 21 | 19, 20 | eqtr4di 2247 |
. . 3
|
| 22 | eqeng 6834 |
. . 3
| |
| 23 | 4, 21, 22 | mpsyl 65 |
. 2
|
| 24 | 0nep0 4199 |
. . . . . . . 8
| |
| 25 | 0ex 4161 |
. . . . . . . . . . 11
| |
| 26 | 25, 2 | prss 3779 |
. . . . . . . . . 10
|
| 27 | 17, 26 | mpbir 146 |
. . . . . . . . 9
|
| 28 | en2eqpr 6977 |
. . . . . . . . . 10
| |
| 29 | 28 | 3expb 1206 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpan2 425 |
. . . . . . . 8
|
| 31 | 24, 30 | mpi 15 |
. . . . . . 7
|
| 32 | 31 | eleq2d 2266 |
. . . . . 6
|
| 33 | 32, 11, 13 | 3bitr3g 222 |
. . . . 5
|
| 34 | 33 | biimpd 144 |
. . . 4
|
| 35 | 34 | alrimiv 1888 |
. . 3
|
| 36 | 35, 5 | sylibr 134 |
. 2
|
| 37 | 23, 36 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-exmid 4229 df-id 4329 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-2o 6484 df-en 6809 |
| This theorem is referenced by: exmidpw2en 6982 pwf1oexmid 15730 |
| Copyright terms: Public domain | W3C validator |