| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidpweq | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| exmidpweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid01 4231 |
. . . . . . . 8
| |
| 2 | 1 | biimpi 120 |
. . . . . . 7
|
| 3 | 2 | 19.21bi 1572 |
. . . . . 6
|
| 4 | df1o2 6487 |
. . . . . . . . 9
| |
| 5 | 4 | pweqi 3609 |
. . . . . . . 8
|
| 6 | 5 | eleq2i 2263 |
. . . . . . 7
|
| 7 | velpw 3612 |
. . . . . . 7
| |
| 8 | 6, 7 | bitri 184 |
. . . . . 6
|
| 9 | vex 2766 |
. . . . . . 7
| |
| 10 | 9 | elpr 3643 |
. . . . . 6
|
| 11 | 3, 8, 10 | 3imtr4g 205 |
. . . . 5
|
| 12 | 11 | ssrdv 3189 |
. . . 4
|
| 13 | pwpw0ss 3834 |
. . . . . 6
| |
| 14 | 13, 5 | sseqtrri 3218 |
. . . . 5
|
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | 12, 15 | eqssd 3200 |
. . 3
|
| 17 | df2o2 6489 |
. . 3
| |
| 18 | 16, 17 | eqtr4di 2247 |
. 2
|
| 19 | simpr 110 |
. . . . . . . . 9
| |
| 20 | 19, 7 | sylibr 134 |
. . . . . . . 8
|
| 21 | 20, 5 | eleqtrrdi 2290 |
. . . . . . 7
|
| 22 | simpl 109 |
. . . . . . . 8
| |
| 23 | 22, 17 | eqtrdi 2245 |
. . . . . . 7
|
| 24 | 21, 23 | eleqtrd 2275 |
. . . . . 6
|
| 25 | 24, 10 | sylib 122 |
. . . . 5
|
| 26 | 25 | ex 115 |
. . . 4
|
| 27 | 26 | alrimiv 1888 |
. . 3
|
| 28 | 27, 1 | sylibr 134 |
. 2
|
| 29 | 18, 28 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-nul 4159 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-exmid 4228 df-suc 4406 df-1o 6474 df-2o 6475 |
| This theorem is referenced by: pw1fin 6971 pw1nel3 7298 3nsssucpw1 7303 onntri35 7304 |
| Copyright terms: Public domain | W3C validator |