Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidpweq | Unicode version |
Description: Excluded middle is equivalent to the power set of being . (Contributed by Jim Kingdon, 28-Jul-2024.) |
Ref | Expression |
---|---|
exmidpweq | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid01 4177 | . . . . . . . 8 EXMID | |
2 | 1 | biimpi 119 | . . . . . . 7 EXMID |
3 | 2 | 19.21bi 1546 | . . . . . 6 EXMID |
4 | df1o2 6397 | . . . . . . . . 9 | |
5 | 4 | pweqi 3563 | . . . . . . . 8 |
6 | 5 | eleq2i 2233 | . . . . . . 7 |
7 | velpw 3566 | . . . . . . 7 | |
8 | 6, 7 | bitri 183 | . . . . . 6 |
9 | vex 2729 | . . . . . . 7 | |
10 | 9 | elpr 3597 | . . . . . 6 |
11 | 3, 8, 10 | 3imtr4g 204 | . . . . 5 EXMID |
12 | 11 | ssrdv 3148 | . . . 4 EXMID |
13 | pwpw0ss 3784 | . . . . . 6 | |
14 | 13, 5 | sseqtrri 3177 | . . . . 5 |
15 | 14 | a1i 9 | . . . 4 EXMID |
16 | 12, 15 | eqssd 3159 | . . 3 EXMID |
17 | df2o2 6399 | . . 3 | |
18 | 16, 17 | eqtr4di 2217 | . 2 EXMID |
19 | simpr 109 | . . . . . . . . 9 | |
20 | 19, 7 | sylibr 133 | . . . . . . . 8 |
21 | 20, 5 | eleqtrrdi 2260 | . . . . . . 7 |
22 | simpl 108 | . . . . . . . 8 | |
23 | 22, 17 | eqtrdi 2215 | . . . . . . 7 |
24 | 21, 23 | eleqtrd 2245 | . . . . . 6 |
25 | 24, 10 | sylib 121 | . . . . 5 |
26 | 25 | ex 114 | . . . 4 |
27 | 26 | alrimiv 1862 | . . 3 |
28 | 27, 1 | sylibr 133 | . 2 EXMID |
29 | 18, 28 | impbii 125 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wal 1341 wceq 1343 wcel 2136 wss 3116 c0 3409 cpw 3559 csn 3576 cpr 3577 EXMIDwem 4173 c1o 6377 c2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-nul 4108 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-exmid 4174 df-suc 4349 df-1o 6384 df-2o 6385 |
This theorem is referenced by: pw1fin 6876 pw1nel3 7187 3nsssucpw1 7192 onntri35 7193 |
Copyright terms: Public domain | W3C validator |