ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq Unicode version

Theorem exmidpweq 6965
Description: Excluded middle is equivalent to the power set of  1o being  2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq  |-  (EXMID  <->  ~P 1o  =  2o )

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4227 . . . . . . . 8  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
21biimpi 120 . . . . . . 7  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
3219.21bi 1569 . . . . . 6  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
4 df1o2 6482 . . . . . . . . 9  |-  1o  =  { (/) }
54pweqi 3605 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
65eleq2i 2260 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
7 velpw 3608 . . . . . . 7  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
86, 7bitri 184 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
9 vex 2763 . . . . . . 7  |-  x  e. 
_V
109elpr 3639 . . . . . 6  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
113, 8, 103imtr4g 205 . . . . 5  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1211ssrdv 3185 . . . 4  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
13 pwpw0ss 3830 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1413, 5sseqtrri 3214 . . . . 5  |-  { (/) ,  { (/) } }  C_  ~P 1o
1514a1i 9 . . . 4  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1612, 15eqssd 3196 . . 3  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
17 df2o2 6484 . . 3  |-  2o  =  { (/) ,  { (/) } }
1816, 17eqtr4di 2244 . 2  |-  (EXMID  ->  ~P 1o  =  2o )
19 simpr 110 . . . . . . . . 9  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  C_  { (/) } )
2019, 7sylibr 134 . . . . . . . 8  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  ~P { (/) } )
2120, 5eleqtrrdi 2287 . . . . . . 7  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  ~P 1o )
22 simpl 109 . . . . . . . 8  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ~P 1o  =  2o )
2322, 17eqtrdi 2242 . . . . . . 7  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ~P 1o  =  { (/) ,  { (/) } } )
2421, 23eleqtrd 2272 . . . . . 6  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  {
(/) ,  { (/) } }
)
2524, 10sylib 122 . . . . 5  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
2625ex 115 . . . 4  |-  ( ~P 1o  =  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2726alrimiv 1885 . . 3  |-  ( ~P 1o  =  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2827, 1sylibr 134 . 2  |-  ( ~P 1o  =  2o  -> EXMID )
2918, 28impbii 126 1  |-  (EXMID  <->  ~P 1o  =  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2164    C_ wss 3153   (/)c0 3446   ~Pcpw 3601   {csn 3618   {cpr 3619  EXMIDwem 4223   1oc1o 6462   2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4155
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-exmid 4224  df-suc 4402  df-1o 6469  df-2o 6470
This theorem is referenced by:  pw1fin  6966  pw1nel3  7291  3nsssucpw1  7296  onntri35  7297
  Copyright terms: Public domain W3C validator