ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidpweq Unicode version

Theorem exmidpweq 6875
Description: Excluded middle is equivalent to the power set of  1o being  2o. (Contributed by Jim Kingdon, 28-Jul-2024.)
Assertion
Ref Expression
exmidpweq  |-  (EXMID  <->  ~P 1o  =  2o )

Proof of Theorem exmidpweq
StepHypRef Expression
1 exmid01 4177 . . . . . . . 8  |-  (EXMID  <->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
21biimpi 119 . . . . . . 7  |-  (EXMID  ->  A. x
( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/)
} ) ) )
3219.21bi 1546 . . . . . 6  |-  (EXMID  ->  (
x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
4 df1o2 6397 . . . . . . . . 9  |-  1o  =  { (/) }
54pweqi 3563 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
65eleq2i 2233 . . . . . . 7  |-  ( x  e.  ~P 1o  <->  x  e.  ~P { (/) } )
7 velpw 3566 . . . . . . 7  |-  ( x  e.  ~P { (/) }  <-> 
x  C_  { (/) } )
86, 7bitri 183 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  { (/) } )
9 vex 2729 . . . . . . 7  |-  x  e. 
_V
109elpr 3597 . . . . . 6  |-  ( x  e.  { (/) ,  { (/)
} }  <->  ( x  =  (/)  \/  x  =  { (/) } ) )
113, 8, 103imtr4g 204 . . . . 5  |-  (EXMID  ->  (
x  e.  ~P 1o  ->  x  e.  { (/) ,  { (/) } } ) )
1211ssrdv 3148 . . . 4  |-  (EXMID  ->  ~P 1o  C_  { (/) ,  { (/)
} } )
13 pwpw0ss 3784 . . . . . 6  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
1413, 5sseqtrri 3177 . . . . 5  |-  { (/) ,  { (/) } }  C_  ~P 1o
1514a1i 9 . . . 4  |-  (EXMID  ->  { (/) ,  { (/) } }  C_  ~P 1o )
1612, 15eqssd 3159 . . 3  |-  (EXMID  ->  ~P 1o  =  { (/) ,  { (/)
} } )
17 df2o2 6399 . . 3  |-  2o  =  { (/) ,  { (/) } }
1816, 17eqtr4di 2217 . 2  |-  (EXMID  ->  ~P 1o  =  2o )
19 simpr 109 . . . . . . . . 9  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  C_  { (/) } )
2019, 7sylibr 133 . . . . . . . 8  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  ~P { (/) } )
2120, 5eleqtrrdi 2260 . . . . . . 7  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  ~P 1o )
22 simpl 108 . . . . . . . 8  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ~P 1o  =  2o )
2322, 17eqtrdi 2215 . . . . . . 7  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ~P 1o  =  { (/) ,  { (/) } } )
2421, 23eleqtrd 2245 . . . . . 6  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  x  e.  {
(/) ,  { (/) } }
)
2524, 10sylib 121 . . . . 5  |-  ( ( ~P 1o  =  2o 
/\  x  C_  { (/) } )  ->  ( x  =  (/)  \/  x  =  { (/) } ) )
2625ex 114 . . . 4  |-  ( ~P 1o  =  2o  ->  ( x  C_  { (/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2726alrimiv 1862 . . 3  |-  ( ~P 1o  =  2o  ->  A. x ( x  C_  {
(/) }  ->  ( x  =  (/)  \/  x  =  { (/) } ) ) )
2827, 1sylibr 133 . 2  |-  ( ~P 1o  =  2o  -> EXMID )
2918, 28impbii 125 1  |-  (EXMID  <->  ~P 1o  =  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577  EXMIDwem 4173   1oc1o 6377   2oc2o 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-nul 4108
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-exmid 4174  df-suc 4349  df-1o 6384  df-2o 6385
This theorem is referenced by:  pw1fin  6876  pw1nel3  7187  3nsssucpw1  7192  onntri35  7193
  Copyright terms: Public domain W3C validator