ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq Unicode version

Theorem pweq 3629
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq  |-  ( A  =  B  ->  ~P A  =  ~P B
)

Proof of Theorem pweq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3225 . . 3  |-  ( A  =  B  ->  (
x  C_  A  <->  x  C_  B
) )
21abbidv 2325 . 2  |-  ( A  =  B  ->  { x  |  x  C_  A }  =  { x  |  x 
C_  B } )
3 df-pw 3628 . 2  |-  ~P A  =  { x  |  x 
C_  A }
4 df-pw 3628 . 2  |-  ~P B  =  { x  |  x 
C_  B }
52, 3, 43eqtr4g 2265 1  |-  ( A  =  B  ->  ~P A  =  ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {cab 2193    C_ wss 3174   ~Pcpw 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187  df-pw 3628
This theorem is referenced by:  pweqi  3630  pweqd  3631  axpweq  4231  pwexg  4240  pwssunim  4349  ordpwsucexmid  4636  exmidpw2en  7035  fival  7098  isacnm  7346  istopg  14586  istopon  14600  eltg  14639  tgdom  14659  ntrval  14697  uhgreq12g  15787  uhgr0vb  15795  isupgren  15806  isumgren  15816
  Copyright terms: Public domain W3C validator