Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pweq | Unicode version |
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pweq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3171 | . . 3 | |
2 | 1 | abbidv 2288 | . 2 |
3 | df-pw 3568 | . 2 | |
4 | df-pw 3568 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cab 2156 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: pweqi 3570 pweqd 3571 axpweq 4157 pwexg 4166 pwssunim 4269 ordpwsucexmid 4554 fival 6947 istopg 12791 istopon 12805 eltg 12846 tgdom 12866 ntrval 12904 |
Copyright terms: Public domain | W3C validator |