| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweq | Unicode version | ||
| Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3248 |
. . 3
| |
| 2 | 1 | abbidv 2347 |
. 2
|
| 3 | df-pw 3651 |
. 2
| |
| 4 | df-pw 3651 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: pweqi 3653 pweqd 3654 axpweq 4255 pwexg 4264 pwssunim 4375 ordpwsucexmid 4662 exmidpw2en 7074 fival 7137 isacnm 7385 istopg 14673 istopon 14687 eltg 14726 tgdom 14746 ntrval 14784 uhgreq12g 15876 uhgr0vb 15884 isupgren 15895 isumgren 15905 isuspgren 15955 isusgren 15956 isausgren 15965 |
| Copyright terms: Public domain | W3C validator |