| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pweq | Unicode version | ||
| Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| pweq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3225 |
. . 3
| |
| 2 | 1 | abbidv 2325 |
. 2
|
| 3 | df-pw 3628 |
. 2
| |
| 4 | df-pw 3628 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 df-pw 3628 |
| This theorem is referenced by: pweqi 3630 pweqd 3631 axpweq 4231 pwexg 4240 pwssunim 4349 ordpwsucexmid 4636 exmidpw2en 7035 fival 7098 isacnm 7346 istopg 14586 istopon 14600 eltg 14639 tgdom 14659 ntrval 14697 uhgreq12g 15787 uhgr0vb 15795 isupgren 15806 isumgren 15816 |
| Copyright terms: Public domain | W3C validator |