![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pweq | Unicode version |
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pweq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3049 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | abbidv 2206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-pw 3435 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-pw 3435 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2146 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3006 df-ss 3013 df-pw 3435 |
This theorem is referenced by: pweqi 3437 pweqd 3438 axpweq 4012 pwexg 4021 pwssunim 4120 ordpwsucexmid 4399 istopg 11759 istopon 11773 eltg 11813 tgdom 11833 ntrval 11871 |
Copyright terms: Public domain | W3C validator |