ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweq Unicode version

Theorem pweq 3652
Description: Equality theorem for power class. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pweq  |-  ( A  =  B  ->  ~P A  =  ~P B
)

Proof of Theorem pweq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sseq2 3248 . . 3  |-  ( A  =  B  ->  (
x  C_  A  <->  x  C_  B
) )
21abbidv 2347 . 2  |-  ( A  =  B  ->  { x  |  x  C_  A }  =  { x  |  x 
C_  B } )
3 df-pw 3651 . 2  |-  ~P A  =  { x  |  x 
C_  A }
4 df-pw 3651 . 2  |-  ~P B  =  { x  |  x 
C_  B }
52, 3, 43eqtr4g 2287 1  |-  ( A  =  B  ->  ~P A  =  ~P B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   {cab 2215    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  pweqi  3653  pweqd  3654  axpweq  4255  pwexg  4264  pwssunim  4375  ordpwsucexmid  4662  exmidpw2en  7074  fival  7137  isacnm  7385  istopg  14673  istopon  14687  eltg  14726  tgdom  14746  ntrval  14784  uhgreq12g  15876  uhgr0vb  15884  isupgren  15895  isumgren  15905  isuspgren  15955  isusgren  15956  isausgren  15965
  Copyright terms: Public domain W3C validator