ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7414
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7411 . . . 4  |-  ~P 1o  e.  On
21onirri 4635 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6575 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3883 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3653 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3259 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4211 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4272 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3824 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 146 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 113 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2302 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2292 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 168 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 666 . 2  |-  -.  ~P 1o  =  1o
1615neir 2403 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666   {cpr 3667   1oc1o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562
This theorem is referenced by:  pw1nel3  7416  sucpw1nel3  7418
  Copyright terms: Public domain W3C validator