ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7375
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7372 . . . 4  |-  ~P 1o  e.  On
21onirri 4609 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6538 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3859 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3630 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3236 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4187 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4248 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3800 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 146 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 113 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2280 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2270 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 168 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 664 . 2  |-  -.  ~P 1o  =  1o
1615neir 2381 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2178    =/= wne 2378    C_ wss 3174   (/)c0 3468   ~Pcpw 3626   {csn 3643   {cpr 3644   1oc1o 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436  df-1o 6525
This theorem is referenced by:  pw1nel3  7377  sucpw1nel3  7379
  Copyright terms: Public domain W3C validator