ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7341
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7338 . . . 4  |-  ~P 1o  e.  On
21onirri 4591 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6515 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3845 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3620 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3228 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4171 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4232 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3789 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 146 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 113 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2278 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2268 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 168 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 664 . 2  |-  -.  ~P 1o  =  1o
1615neir 2379 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376    C_ wss 3166   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634   1oc1o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-1o 6502
This theorem is referenced by:  pw1nel3  7343  sucpw1nel3  7345
  Copyright terms: Public domain W3C validator