ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7296
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7293 . . . 4  |-  ~P 1o  e.  On
21onirri 4579 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6487 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3834 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3609 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3218 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4160 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4221 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3778 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 146 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 113 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2269 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2259 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 168 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 663 . 2  |-  -.  ~P 1o  =  1o
1615neir 2370 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367    C_ wss 3157   (/)c0 3450   ~Pcpw 3605   {csn 3622   {cpr 3623   1oc1o 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-1o 6474
This theorem is referenced by:  pw1nel3  7298  sucpw1nel3  7300
  Copyright terms: Public domain W3C validator