| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1ne1 | Unicode version | ||
| Description: The power set of |
| Ref | Expression |
|---|---|
| pw1ne1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1on 7338 |
. . . 4
| |
| 2 | 1 | onirri 4591 |
. . 3
|
| 3 | df1o2 6515 |
. . . . 5
| |
| 4 | pwpw0ss 3845 |
. . . . . . . 8
| |
| 5 | 3 | pweqi 3620 |
. . . . . . . 8
|
| 6 | 4, 5 | sseqtrri 3228 |
. . . . . . 7
|
| 7 | 0ex 4171 |
. . . . . . . 8
| |
| 8 | p0ex 4232 |
. . . . . . . 8
| |
| 9 | 7, 8 | prss 3789 |
. . . . . . 7
|
| 10 | 6, 9 | mpbir 146 |
. . . . . 6
|
| 11 | 10 | simpri 113 |
. . . . 5
|
| 12 | 3, 11 | eqeltri 2278 |
. . . 4
|
| 13 | eleq1 2268 |
. . . 4
| |
| 14 | 12, 13 | mpbiri 168 |
. . 3
|
| 15 | 2, 14 | mto 664 |
. 2
|
| 16 | 15 | neir 2379 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: pw1nel3 7343 sucpw1nel3 7345 |
| Copyright terms: Public domain | W3C validator |