ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7185
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7182 . . . 4  |-  ~P 1o  e.  On
21onirri 4520 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6397 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3784 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3563 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3177 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4109 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4167 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3729 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 145 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 112 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2239 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2229 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 167 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 652 . 2  |-  -.  ~P 1o  =  1o
1615neir 2339 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136    =/= wne 2336    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577   1oc1o 6377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-1o 6384
This theorem is referenced by:  pw1nel3  7187  sucpw1nel3  7189
  Copyright terms: Public domain W3C validator