ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne1 Unicode version

Theorem pw1ne1 7147
Description: The power set of  1o is not one. (Contributed by Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne1  |-  ~P 1o  =/=  1o

Proof of Theorem pw1ne1
StepHypRef Expression
1 pw1on 7144 . . . 4  |-  ~P 1o  e.  On
21onirri 4500 . . 3  |-  -.  ~P 1o  e.  ~P 1o
3 df1o2 6370 . . . . 5  |-  1o  =  { (/) }
4 pwpw0ss 3767 . . . . . . . 8  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
53pweqi 3547 . . . . . . . 8  |-  ~P 1o  =  ~P { (/) }
64, 5sseqtrri 3163 . . . . . . 7  |-  { (/) ,  { (/) } }  C_  ~P 1o
7 0ex 4091 . . . . . . . 8  |-  (/)  e.  _V
8 p0ex 4148 . . . . . . . 8  |-  { (/) }  e.  _V
97, 8prss 3712 . . . . . . 7  |-  ( (
(/)  e.  ~P 1o  /\ 
{ (/) }  e.  ~P 1o )  <->  { (/) ,  { (/) } }  C_  ~P 1o )
106, 9mpbir 145 . . . . . 6  |-  ( (/)  e.  ~P 1o  /\  { (/)
}  e.  ~P 1o )
1110simpri 112 . . . . 5  |-  { (/) }  e.  ~P 1o
123, 11eqeltri 2230 . . . 4  |-  1o  e.  ~P 1o
13 eleq1 2220 . . . 4  |-  ( ~P 1o  =  1o  ->  ( ~P 1o  e.  ~P 1o 
<->  1o  e.  ~P 1o ) )
1412, 13mpbiri 167 . . 3  |-  ( ~P 1o  =  1o  ->  ~P 1o  e.  ~P 1o )
152, 14mto 652 . 2  |-  -.  ~P 1o  =  1o
1615neir 2330 1  |-  ~P 1o  =/=  1o
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335    e. wcel 2128    =/= wne 2327    C_ wss 3102   (/)c0 3394   ~Pcpw 3543   {csn 3560   {cpr 3561   1oc1o 6350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-uni 3773  df-tr 4063  df-iord 4325  df-on 4327  df-suc 4330  df-1o 6357
This theorem is referenced by:  pw1nel3  7149  sucpw1nel3  7151
  Copyright terms: Public domain W3C validator