ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isopn3 Unicode version

Theorem isopn3 13196
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
isopn3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  J  <->  ( ( int `  J
) `  S )  =  S ) )

Proof of Theorem isopn3
StepHypRef Expression
1 clscld.1 . . . . 5  |-  X  = 
U. J
21ntrval 13181 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
3 inss2 3354 . . . . . . . 8  |-  ( J  i^i  ~P S ) 
C_  ~P S
43unissi 3828 . . . . . . 7  |-  U. ( J  i^i  ~P S ) 
C_  U. ~P S
5 unipw 4211 . . . . . . 7  |-  U. ~P S  =  S
64, 5sseqtri 3187 . . . . . 6  |-  U. ( J  i^i  ~P S ) 
C_  S
76a1i 9 . . . . 5  |-  ( S  e.  J  ->  U. ( J  i^i  ~P S ) 
C_  S )
8 id 19 . . . . . . 7  |-  ( S  e.  J  ->  S  e.  J )
9 pwidg 3586 . . . . . . 7  |-  ( S  e.  J  ->  S  e.  ~P S )
108, 9elind 3318 . . . . . 6  |-  ( S  e.  J  ->  S  e.  ( J  i^i  ~P S ) )
11 elssuni 3833 . . . . . 6  |-  ( S  e.  ( J  i^i  ~P S )  ->  S  C_ 
U. ( J  i^i  ~P S ) )
1210, 11syl 14 . . . . 5  |-  ( S  e.  J  ->  S  C_ 
U. ( J  i^i  ~P S ) )
137, 12eqssd 3170 . . . 4  |-  ( S  e.  J  ->  U. ( J  i^i  ~P S )  =  S )
142, 13sylan9eq 2228 . . 3  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  S  e.  J
)  ->  ( ( int `  J ) `  S )  =  S )
1514ex 115 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  J  ->  ( ( int `  J
) `  S )  =  S ) )
161ntropn 13188 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  e.  J )
17 eleq1 2238 . . 3  |-  ( ( ( int `  J
) `  S )  =  S  ->  ( ( ( int `  J
) `  S )  e.  J  <->  S  e.  J
) )
1816, 17syl5ibcom 155 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( ( int `  J ) `  S
)  =  S  ->  S  e.  J )
)
1915, 18impbid 129 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  J  <->  ( ( int `  J
) `  S )  =  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146    i^i cin 3126    C_ wss 3127   ~Pcpw 3572   U.cuni 3805   ` cfv 5208   Topctop 13066   intcnt 13164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-top 13067  df-ntr 13167
This theorem is referenced by:  ntridm  13197  ntrtop  13199  ntr0  13205  isopn3i  13206  cnntr  13296
  Copyright terms: Public domain W3C validator