Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isopn3 | Unicode version |
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
clscld.1 |
Ref | Expression |
---|---|
isopn3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . . . 5 | |
2 | 1 | ntrval 13181 | . . . 4 |
3 | inss2 3354 | . . . . . . . 8 | |
4 | 3 | unissi 3828 | . . . . . . 7 |
5 | unipw 4211 | . . . . . . 7 | |
6 | 4, 5 | sseqtri 3187 | . . . . . 6 |
7 | 6 | a1i 9 | . . . . 5 |
8 | id 19 | . . . . . . 7 | |
9 | pwidg 3586 | . . . . . . 7 | |
10 | 8, 9 | elind 3318 | . . . . . 6 |
11 | elssuni 3833 | . . . . . 6 | |
12 | 10, 11 | syl 14 | . . . . 5 |
13 | 7, 12 | eqssd 3170 | . . . 4 |
14 | 2, 13 | sylan9eq 2228 | . . 3 |
15 | 14 | ex 115 | . 2 |
16 | 1 | ntropn 13188 | . . 3 |
17 | eleq1 2238 | . . 3 | |
18 | 16, 17 | syl5ibcom 155 | . 2 |
19 | 15, 18 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cin 3126 wss 3127 cpw 3572 cuni 3805 cfv 5208 ctop 13066 cnt 13164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-top 13067 df-ntr 13167 |
This theorem is referenced by: ntridm 13197 ntrtop 13199 ntr0 13205 isopn3i 13206 cnntr 13296 |
Copyright terms: Public domain | W3C validator |