| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > baspartn | Unicode version | ||
| Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| baspartn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . . . . . . . 9
| |
| 2 | pwidg 3629 |
. . . . . . . . 9
| |
| 3 | 1, 2 | elind 3357 |
. . . . . . . 8
|
| 4 | elssuni 3877 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
|
| 6 | inidm 3381 |
. . . . . . . . 9
| |
| 7 | ineq2 3367 |
. . . . . . . . 9
| |
| 8 | 6, 7 | eqtr3id 2251 |
. . . . . . . 8
|
| 9 | 8 | pweqd 3620 |
. . . . . . . . . 10
|
| 10 | 9 | ineq2d 3373 |
. . . . . . . . 9
|
| 11 | 10 | unieqd 3860 |
. . . . . . . 8
|
| 12 | 8, 11 | sseq12d 3223 |
. . . . . . 7
|
| 13 | 5, 12 | syl5ibcom 155 |
. . . . . 6
|
| 14 | 0ss 3498 |
. . . . . . . 8
| |
| 15 | sseq1 3215 |
. . . . . . . 8
| |
| 16 | 14, 15 | mpbiri 168 |
. . . . . . 7
|
| 17 | 16 | a1i 9 |
. . . . . 6
|
| 18 | 13, 17 | jaod 718 |
. . . . 5
|
| 19 | 18 | ralimdv 2573 |
. . . 4
|
| 20 | 19 | ralimia 2566 |
. . 3
|
| 21 | 20 | adantl 277 |
. 2
|
| 22 | isbasisg 14434 |
. . 3
| |
| 23 | 22 | adantr 276 |
. 2
|
| 24 | 21, 23 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-uni 3850 df-bases 14433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |