ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwin Unicode version

Theorem pwin 4328
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )

Proof of Theorem pwin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssin 3394 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
2 vex 2774 . . . . . 6  |-  x  e. 
_V
32elpw 3621 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
42elpw 3621 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
53, 4anbi12i 460 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  ( x  C_  A  /\  x  C_  B ) )
62elpw 3621 . . . 4  |-  ( x  e.  ~P ( A  i^i  B )  <->  x  C_  ( A  i^i  B ) )
71, 5, 63bitr4i 212 . . 3  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  x  e.  ~P ( A  i^i  B
) )
87ineqri 3365 . 2  |-  ( ~P A  i^i  ~P B
)  =  ~P ( A  i^i  B )
98eqcomi 2208 1  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372    e. wcel 2175    i^i cin 3164    C_ wss 3165   ~Pcpw 3615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator