ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwin Unicode version

Theorem pwin 4142
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )

Proof of Theorem pwin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssin 3245 . . . 4  |-  ( ( x  C_  A  /\  x  C_  B )  <->  x  C_  ( A  i^i  B ) )
2 vex 2644 . . . . . 6  |-  x  e. 
_V
32elpw 3463 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
42elpw 3463 . . . . 5  |-  ( x  e.  ~P B  <->  x  C_  B
)
53, 4anbi12i 451 . . . 4  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  ( x  C_  A  /\  x  C_  B ) )
62elpw 3463 . . . 4  |-  ( x  e.  ~P ( A  i^i  B )  <->  x  C_  ( A  i^i  B ) )
71, 5, 63bitr4i 211 . . 3  |-  ( ( x  e.  ~P A  /\  x  e.  ~P B )  <->  x  e.  ~P ( A  i^i  B
) )
87ineqri 3216 . 2  |-  ( ~P A  i^i  ~P B
)  =  ~P ( A  i^i  B )
98eqcomi 2104 1  |-  ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1299    e. wcel 1448    i^i cin 3020    C_ wss 3021   ~Pcpw 3457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-pw 3459
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator