![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwin | GIF version |
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
pwin | ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 3372 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
2 | vex 2755 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | 2 | elpw 3596 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
4 | 2 | elpw 3596 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
5 | 3, 4 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵)) |
6 | 2 | elpw 3596 | . . . 4 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
7 | 1, 5, 6 | 3bitr4i 212 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵)) |
8 | 7 | ineqri 3343 | . 2 ⊢ (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴 ∩ 𝐵) |
9 | 8 | eqcomi 2193 | 1 ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∩ cin 3143 ⊆ wss 3144 𝒫 cpw 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-in 3150 df-ss 3157 df-pw 3592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |