ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwin GIF version

Theorem pwin 4333
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)

Proof of Theorem pwin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssin 3396 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
2 vex 2776 . . . . . 6 𝑥 ∈ V
32elpw 3623 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
42elpw 3623 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
53, 4anbi12i 460 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
62elpw 3623 . . . 4 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
71, 5, 63bitr4i 212 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴𝐵))
87ineqri 3367 . 2 (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴𝐵)
98eqcomi 2210 1 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  cin 3166  wss 3167  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-in 3173  df-ss 3180  df-pw 3619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator