ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwin GIF version

Theorem pwin 4350
Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
pwin 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)

Proof of Theorem pwin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssin 3406 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
2 vex 2782 . . . . . 6 𝑥 ∈ V
32elpw 3635 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
42elpw 3635 . . . . 5 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
53, 4anbi12i 460 . . . 4 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ (𝑥𝐴𝑥𝐵))
62elpw 3635 . . . 4 (𝑥 ∈ 𝒫 (𝐴𝐵) ↔ 𝑥 ⊆ (𝐴𝐵))
71, 5, 63bitr4i 212 . . 3 ((𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴𝐵))
87ineqri 3377 . 2 (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴𝐵)
98eqcomi 2213 1 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1375  wcel 2180  cin 3176  wss 3177  𝒫 cpw 3629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator