| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwin | GIF version | ||
| Description: The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.) |
| Ref | Expression |
|---|---|
| pwin | ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssin 3426 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) | |
| 2 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpw 3655 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 4 | 2 | elpw 3655 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) |
| 5 | 3, 4 | anbi12i 460 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵)) |
| 6 | 2 | elpw 3655 | . . . 4 ⊢ (𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵) ↔ 𝑥 ⊆ (𝐴 ∩ 𝐵)) |
| 7 | 1, 5, 6 | 3bitr4i 212 | . . 3 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ 𝒫 𝐵) ↔ 𝑥 ∈ 𝒫 (𝐴 ∩ 𝐵)) |
| 8 | 7 | ineqri 3397 | . 2 ⊢ (𝒫 𝐴 ∩ 𝒫 𝐵) = 𝒫 (𝐴 ∩ 𝐵) |
| 9 | 8 | eqcomi 2233 | 1 ⊢ 𝒫 (𝐴 ∩ 𝐵) = (𝒫 𝐴 ∩ 𝒫 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∩ cin 3196 ⊆ wss 3197 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |