ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqri Unicode version

Theorem ineqri 3356
Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
ineqri.1  |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )
Assertion
Ref Expression
ineqri  |-  ( A  i^i  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3346 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 ineqri.1 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )
31, 2bitri 184 . 2  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  C
)
43eqriv 2193 1  |-  ( A  i^i  B )  =  C
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    i^i cin 3156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163
This theorem is referenced by:  inidm  3372  inass  3373  indi  3410  inab  3431  in0  3485  pwin  4317  dmres  4967
  Copyright terms: Public domain W3C validator