ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineqri Unicode version

Theorem ineqri 3315
Description: Inference from membership to intersection. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
ineqri.1  |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )
Assertion
Ref Expression
ineqri  |-  ( A  i^i  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem ineqri
StepHypRef Expression
1 elin 3305 . . 3  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2 ineqri.1 . . 3  |-  ( ( x  e.  A  /\  x  e.  B )  <->  x  e.  C )
31, 2bitri 183 . 2  |-  ( x  e.  ( A  i^i  B )  <->  x  e.  C
)
43eqriv 2162 1  |-  ( A  i^i  B )  =  C
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    i^i cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122
This theorem is referenced by:  inidm  3331  inass  3332  indi  3369  inab  3390  in0  3443  pwin  4260  dmres  4905
  Copyright terms: Public domain W3C validator