ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwprss Unicode version

Theorem pwprss 3785
Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwprss  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }

Proof of Theorem pwprss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . 6  |-  x  e. 
_V
21elpr 3597 . . . . 5  |-  ( x  e.  { (/) ,  { A } }  <->  ( x  =  (/)  \/  x  =  { A } ) )
31elpr 3597 . . . . 5  |-  ( x  e.  { { B } ,  { A ,  B } }  <->  ( x  =  { B }  \/  x  =  { A ,  B } ) )
42, 3orbi12i 754 . . . 4  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  <-> 
( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) ) )
5 ssprr 3736 . . . 4  |-  ( ( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) )  ->  x  C_ 
{ A ,  B } )
64, 5sylbi 120 . . 3  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  ->  x  C_  { A ,  B } )
7 elun 3263 . . 3  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  <->  ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } ) )
81elpw 3565 . . 3  |-  ( x  e.  ~P { A ,  B }  <->  x  C_  { A ,  B } )
96, 7, 83imtr4i 200 . 2  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  ->  x  e.  ~P { A ,  B } )
109ssriv 3146 1  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by:  pwpwpw0ss  3787  ord3ex  4169
  Copyright terms: Public domain W3C validator