ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwprss Unicode version

Theorem pwprss 3846
Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwprss  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }

Proof of Theorem pwprss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . . . 6  |-  x  e. 
_V
21elpr 3654 . . . . 5  |-  ( x  e.  { (/) ,  { A } }  <->  ( x  =  (/)  \/  x  =  { A } ) )
31elpr 3654 . . . . 5  |-  ( x  e.  { { B } ,  { A ,  B } }  <->  ( x  =  { B }  \/  x  =  { A ,  B } ) )
42, 3orbi12i 766 . . . 4  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  <-> 
( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) ) )
5 ssprr 3797 . . . 4  |-  ( ( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) )  ->  x  C_ 
{ A ,  B } )
64, 5sylbi 121 . . 3  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  ->  x  C_  { A ,  B } )
7 elun 3314 . . 3  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  <->  ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } ) )
81elpw 3622 . . 3  |-  ( x  e.  ~P { A ,  B }  <->  x  C_  { A ,  B } )
96, 7, 83imtr4i 201 . 2  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  ->  x  e.  ~P { A ,  B } )
109ssriv 3197 1  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164    C_ wss 3166   (/)c0 3460   ~Pcpw 3616   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640
This theorem is referenced by:  pwpwpw0ss  3848  ord3ex  4234
  Copyright terms: Public domain W3C validator