ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwprss Unicode version

Theorem pwprss 3883
Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwprss  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }

Proof of Theorem pwprss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . 6  |-  x  e. 
_V
21elpr 3687 . . . . 5  |-  ( x  e.  { (/) ,  { A } }  <->  ( x  =  (/)  \/  x  =  { A } ) )
31elpr 3687 . . . . 5  |-  ( x  e.  { { B } ,  { A ,  B } }  <->  ( x  =  { B }  \/  x  =  { A ,  B } ) )
42, 3orbi12i 769 . . . 4  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  <-> 
( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) ) )
5 ssprr 3833 . . . 4  |-  ( ( ( x  =  (/)  \/  x  =  { A } )  \/  (
x  =  { B }  \/  x  =  { A ,  B }
) )  ->  x  C_ 
{ A ,  B } )
64, 5sylbi 121 . . 3  |-  ( ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } )  ->  x  C_  { A ,  B } )
7 elun 3345 . . 3  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  <->  ( x  e.  { (/) ,  { A } }  \/  x  e.  { { B } ,  { A ,  B } } ) )
81elpw 3655 . . 3  |-  ( x  e.  ~P { A ,  B }  <->  x  C_  { A ,  B } )
96, 7, 83imtr4i 201 . 2  |-  ( x  e.  ( { (/) ,  { A } }  u.  { { B } ,  { A ,  B } } )  ->  x  e.  ~P { A ,  B } )
109ssriv 3228 1  |-  ( {
(/) ,  { A } }  u.  { { B } ,  { A ,  B } } ) 
C_  ~P { A ,  B }
Colors of variables: wff set class
Syntax hints:    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by:  pwpwpw0ss  3885  ord3ex  4273
  Copyright terms: Public domain W3C validator