ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpw0ss Unicode version

Theorem pwpw0ss 3784
Description: Compute the power set of the power set of the empty set. (See pw0 3720 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwpw0ss  |-  { (/) ,  { (/) } }  C_  ~P { (/) }

Proof of Theorem pwpw0ss
StepHypRef Expression
1 pwsnss 3783 1  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
Colors of variables: wff set class
Syntax hints:    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583
This theorem is referenced by:  pp0ex  4168  exmidpw  6874  exmidpweq  6875  pw1dom2  7183  pw1ne1  7185
  Copyright terms: Public domain W3C validator