Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpw0ss Unicode version

Theorem pwpw0ss 3740
 Description: Compute the power set of the power set of the empty set. (See pw0 3676 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwpw0ss

Proof of Theorem pwpw0ss
StepHypRef Expression
1 pwsnss 3739 1
 Colors of variables: wff set class Syntax hints:   wss 3077  c0 3369  cpw 3516  csn 3533  cpr 3534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-pw 3518  df-sn 3539  df-pr 3540 This theorem is referenced by:  pp0ex  4122  exmidpw  6813  exmidpweq  6814  pw1dom2  7105  pw1ne1  7107
 Copyright terms: Public domain W3C validator