ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpw0ss Unicode version

Theorem pwpw0ss 3654
Description: Compute the power set of the power set of the empty set. (See pw0 3590 for the power set of the empty set.) Theorem 90 of [Suppes] p. 48 (but with subset in place of equality). (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
pwpw0ss  |-  { (/) ,  { (/) } }  C_  ~P { (/) }

Proof of Theorem pwpw0ss
StepHypRef Expression
1 pwsnss 3653 1  |-  { (/) ,  { (/) } }  C_  ~P { (/) }
Colors of variables: wff set class
Syntax hints:    C_ wss 3000   (/)c0 3287   ~Pcpw 3433   {csn 3450   {cpr 3451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457
This theorem is referenced by:  pp0ex  4030  exmidpw  6678  pw1dom2  12162
  Copyright terms: Public domain W3C validator