ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwpw0ss GIF version

Theorem pwpwpw0ss 3850
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 3782 and pwpw0ss 3847.) (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwpwpw0ss ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}

Proof of Theorem pwpwpw0ss
StepHypRef Expression
1 pwprss 3848 1 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  cun 3165  wss 3167  c0 3461  𝒫 cpw 3617  {csn 3634  {cpr 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator