ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwpw0ss GIF version

Theorem pwpwpw0ss 3673
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 3606 and pwpw0ss 3670.) (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwpwpw0ss ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}

Proof of Theorem pwpwpw0ss
StepHypRef Expression
1 pwprss 3671 1 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  cun 3011  wss 3013  c0 3302  𝒫 cpw 3449  {csn 3466  {cpr 3467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator