ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwpw0ss GIF version

Theorem pwpwpw0ss 3885
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 3814 and pwpw0ss 3882.) (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwpwpw0ss ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}

Proof of Theorem pwpwpw0ss
StepHypRef Expression
1 pwprss 3883 1 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
Colors of variables: wff set class
Syntax hints:  cun 3195  wss 3197  c0 3491  𝒫 cpw 3649  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator