ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 Unicode version

Theorem pw0 3814
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0  |-  ~P (/)  =  { (/)
}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3531 . . 3  |-  ( x 
C_  (/)  <->  x  =  (/) )
21abbii 2345 . 2  |-  { x  |  x  C_  (/) }  =  { x  |  x  =  (/) }
3 df-pw 3651 . 2  |-  ~P (/)  =  {
x  |  x  C_  (/)
}
4 df-sn 3672 . 2  |-  { (/) }  =  { x  |  x  =  (/) }
52, 3, 43eqtr4i 2260 1  |-  ~P (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1395   {cab 2215    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672
This theorem is referenced by:  p0ex  4271  sn0topon  14756  sn0cld  14805  pw0ss  15877
  Copyright terms: Public domain W3C validator