ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 Unicode version

Theorem pw0 3779
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0  |-  ~P (/)  =  { (/)
}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3499 . . 3  |-  ( x 
C_  (/)  <->  x  =  (/) )
21abbii 2320 . 2  |-  { x  |  x  C_  (/) }  =  { x  |  x  =  (/) }
3 df-pw 3617 . 2  |-  ~P (/)  =  {
x  |  x  C_  (/)
}
4 df-sn 3638 . 2  |-  { (/) }  =  { x  |  x  =  (/) }
52, 3, 43eqtr4i 2235 1  |-  ~P (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1372   {cab 2190    C_ wss 3165   (/)c0 3459   ~Pcpw 3615   {csn 3632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638
This theorem is referenced by:  p0ex  4231  sn0topon  14478  sn0cld  14527
  Copyright terms: Public domain W3C validator