ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw0 Unicode version

Theorem pw0 3720
Description: Compute the power set of the empty set. Theorem 89 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
pw0  |-  ~P (/)  =  { (/)
}

Proof of Theorem pw0
StepHypRef Expression
1 ss0b 3448 . . 3  |-  ( x 
C_  (/)  <->  x  =  (/) )
21abbii 2282 . 2  |-  { x  |  x  C_  (/) }  =  { x  |  x  =  (/) }
3 df-pw 3561 . 2  |-  ~P (/)  =  {
x  |  x  C_  (/)
}
4 df-sn 3582 . 2  |-  { (/) }  =  { x  |  x  =  (/) }
52, 3, 43eqtr4i 2196 1  |-  ~P (/)  =  { (/)
}
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cab 2151    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582
This theorem is referenced by:  p0ex  4167  sn0topon  12728  sn0cld  12777
  Copyright terms: Public domain W3C validator