ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 Unicode version

Theorem pwuninel2 6428
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4243 . 2  |-  ( U. A  e.  V  ->  -. 
~P U. A  C_  U. A
)
2 elssuni 3916 . 2  |-  ( ~P
U. A  e.  A  ->  ~P U. A  C_  U. A )
31, 2nsyl 631 1  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2200    C_ wss 3197   ~Pcpw 3649   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-nel 2496  df-rab 2517  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889
This theorem is referenced by:  pnfnre  8188
  Copyright terms: Public domain W3C validator