ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 Unicode version

Theorem pwuninel2 6250
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4138 . 2  |-  ( U. A  e.  V  ->  -. 
~P U. A  C_  U. A
)
2 elssuni 3817 . 2  |-  ( ~P
U. A  e.  A  ->  ~P U. A  C_  U. A )
31, 2nsyl 618 1  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2136    C_ wss 3116   ~Pcpw 3559   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-nel 2432  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790
This theorem is referenced by:  pnfnre  7940
  Copyright terms: Public domain W3C validator