ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 Unicode version

Theorem pwuninel2 6340
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4192 . 2  |-  ( U. A  e.  V  ->  -. 
~P U. A  C_  U. A
)
2 elssuni 3867 . 2  |-  ( ~P
U. A  e.  A  ->  ~P U. A  C_  U. A )
31, 2nsyl 629 1  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2167    C_ wss 3157   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by:  pnfnre  8068
  Copyright terms: Public domain W3C validator