ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 Unicode version

Theorem pwuninel2 6085
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4015 . 2  |-  ( U. A  e.  V  ->  -. 
~P U. A  C_  U. A
)
2 elssuni 3703 . 2  |-  ( ~P
U. A  e.  A  ->  ~P U. A  C_  U. A )
31, 2nsyl 596 1  |-  ( U. A  e.  V  ->  -. 
~P U. A  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 1445    C_ wss 3013   ~Pcpw 3449   U.cuni 3675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-nel 2358  df-rab 2379  df-v 2635  df-in 3019  df-ss 3026  df-pw 3451  df-uni 3676
This theorem is referenced by:  pnfnre  7626
  Copyright terms: Public domain W3C validator