ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 GIF version

Theorem pwuninel2 6286
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 4161 . 2 ( 𝐴𝑉 → ¬ 𝒫 𝐴 𝐴)
2 elssuni 3839 . 2 (𝒫 𝐴𝐴 → 𝒫 𝐴 𝐴)
31, 2nsyl 628 1 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2148  wss 3131  𝒫 cpw 3577   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812
This theorem is referenced by:  pnfnre  8002
  Copyright terms: Public domain W3C validator