ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuninel2 GIF version

Theorem pwuninel2 5979
Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwuninel2 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwuninel2
StepHypRef Expression
1 pwnss 3959 . 2 ( 𝐴𝑉 → ¬ 𝒫 𝐴 𝐴)
2 elssuni 3655 . 2 (𝒫 𝐴𝐴 → 𝒫 𝐴 𝐴)
31, 2nsyl 591 1 ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 1434  wss 2984  𝒫 cpw 3406   cuni 3627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-nel 2345  df-rab 2362  df-v 2614  df-in 2990  df-ss 2997  df-pw 3408  df-uni 3628
This theorem is referenced by:  pnfnre  7432
  Copyright terms: Public domain W3C validator