ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposmpo Unicode version

Theorem tposmpo 6144
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
tposmpo  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem tposmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tposmpo.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 5745 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
3 ancom 264 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  <->  ( y  e.  B  /\  x  e.  A )
)
43anbi1i 451 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
y  e.  B  /\  x  e.  A )  /\  z  =  C
) )
54oprabbii 5792 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
61, 2, 53eqtri 2140 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
76tposoprab 6143 . 2  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A
)  /\  z  =  C ) }
8 df-mpo 5745 . 2  |-  ( y  e.  B ,  x  e.  A  |->  C )  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
97, 8eqtr4i 2139 1  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1314    e. wcel 1463   {coprab 5741    e. cmpo 5742  tpos ctpos 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-fv 5099  df-oprab 5744  df-mpo 5745  df-tpos 6108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator