ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposmpo Unicode version

Theorem tposmpo 6427
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpo.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
tposmpo  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem tposmpo
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tposmpo.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpo 6006 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
3 ancom 266 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  <->  ( y  e.  B  /\  x  e.  A )
)
43anbi1i 458 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
y  e.  B  /\  x  e.  A )  /\  z  =  C
) )
54oprabbii 6059 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
61, 2, 53eqtri 2254 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
76tposoprab 6426 . 2  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A
)  /\  z  =  C ) }
8 df-mpo 6006 . 2  |-  ( y  e.  B ,  x  e.  A  |->  C )  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
97, 8eqtr4i 2253 1  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   {coprab 6002    e. cmpo 6003  tpos ctpos 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-oprab 6005  df-mpo 6006  df-tpos 6391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator