Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2pwuninelg | Unicode version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
Ref | Expression |
---|---|
2pwuninelg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4547 | . 2 | |
2 | pwuni 4187 | . . . 4 | |
3 | elpwg 3580 | . . . 4 | |
4 | 2, 3 | mpbiri 168 | . . 3 |
5 | ax-ia3 108 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 1, 6 | mtoi 664 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wcel 2146 wss 3127 cpw 3572 cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 |
This theorem is referenced by: mnfnre 7974 |
Copyright terms: Public domain | W3C validator |