Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2pwuninelg | Unicode version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.) |
Ref | Expression |
---|---|
2pwuninelg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2lp 4531 | . 2 | |
2 | pwuni 4171 | . . . 4 | |
3 | elpwg 3567 | . . . 4 | |
4 | 2, 3 | mpbiri 167 | . . 3 |
5 | ax-ia3 107 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | 1, 6 | mtoi 654 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wcel 2136 wss 3116 cpw 3559 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 |
This theorem is referenced by: mnfnre 7941 |
Copyright terms: Public domain | W3C validator |