ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg Unicode version

Theorem 2pwuninelg 6274
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4547 . 2  |-  -.  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A )
2 pwuni 4187 . . . 4  |-  A  C_  ~P U. A
3 elpwg 3580 . . . 4  |-  ( A  e.  V  ->  ( A  e.  ~P ~P U. A  <->  A  C_  ~P U. A ) )
42, 3mpbiri 168 . . 3  |-  ( A  e.  V  ->  A  e.  ~P ~P U. A
)
5 ax-ia3 108 . . 3  |-  ( A  e.  ~P ~P U. A  ->  ( ~P ~P U. A  e.  A  -> 
( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A
) ) )
64, 5syl 14 . 2  |-  ( A  e.  V  ->  ( ~P ~P U. A  e.  A  ->  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A ) ) )
71, 6mtoi 664 1  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2146    C_ wss 3127   ~Pcpw 3572   U.cuni 3805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806
This theorem is referenced by:  mnfnre  7974
  Copyright terms: Public domain W3C validator