ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg Unicode version

Theorem 2pwuninelg 6392
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4620 . 2  |-  -.  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A )
2 pwuni 4252 . . . 4  |-  A  C_  ~P U. A
3 elpwg 3634 . . . 4  |-  ( A  e.  V  ->  ( A  e.  ~P ~P U. A  <->  A  C_  ~P U. A ) )
42, 3mpbiri 168 . . 3  |-  ( A  e.  V  ->  A  e.  ~P ~P U. A
)
5 ax-ia3 108 . . 3  |-  ( A  e.  ~P ~P U. A  ->  ( ~P ~P U. A  e.  A  -> 
( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A
) ) )
64, 5syl 14 . 2  |-  ( A  e.  V  ->  ( ~P ~P U. A  e.  A  ->  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A ) ) )
71, 6mtoi 666 1  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2178    C_ wss 3174   ~Pcpw 3626   U.cuni 3864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865
This theorem is referenced by:  mnfnre  8150
  Copyright terms: Public domain W3C validator