Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg Unicode version

Theorem 2pwuninelg 6183
 Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4472 . 2
2 pwuni 4119 . . . 4
3 elpwg 3518 . . . 4
42, 3mpbiri 167 . . 3
5 ax-ia3 107 . . 3
64, 5syl 14 . 2
71, 6mtoi 653 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 103   wcel 1480   wss 3071  cpw 3510  cuni 3739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-setind 4455 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-uni 3740 This theorem is referenced by:  mnfnre  7827
 Copyright terms: Public domain W3C validator