ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2pwuninelg Unicode version

Theorem 2pwuninelg 6286
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by Jim Kingdon, 14-Jan-2020.)
Assertion
Ref Expression
2pwuninelg  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )

Proof of Theorem 2pwuninelg
StepHypRef Expression
1 en2lp 4555 . 2  |-  -.  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A )
2 pwuni 4194 . . . 4  |-  A  C_  ~P U. A
3 elpwg 3585 . . . 4  |-  ( A  e.  V  ->  ( A  e.  ~P ~P U. A  <->  A  C_  ~P U. A ) )
42, 3mpbiri 168 . . 3  |-  ( A  e.  V  ->  A  e.  ~P ~P U. A
)
5 ax-ia3 108 . . 3  |-  ( A  e.  ~P ~P U. A  ->  ( ~P ~P U. A  e.  A  -> 
( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A
) ) )
64, 5syl 14 . 2  |-  ( A  e.  V  ->  ( ~P ~P U. A  e.  A  ->  ( A  e.  ~P ~P U. A  /\  ~P ~P U. A  e.  A ) ) )
71, 6mtoi 664 1  |-  ( A  e.  V  ->  -.  ~P ~P U. A  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2148    C_ wss 3131   ~Pcpw 3577   U.cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812
This theorem is referenced by:  mnfnre  8002
  Copyright terms: Public domain W3C validator