| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qdassr | GIF version | ||
| Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| qdassr | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3329 | . 2 ⊢ (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) | |
| 2 | df-pr 3639 | . . 3 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
| 3 | 2 | uneq1i 3322 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) |
| 4 | tpass 3728 | . . 3 ⊢ {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷}) | |
| 5 | 4 | uneq2i 3323 | . 2 ⊢ ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷})) |
| 6 | 1, 3, 5 | 3eqtr4i 2235 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 {csn 3632 {cpr 3633 {ctp 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-tp 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |