ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsns Unicode version

Theorem rexsns 3705
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 3683 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21anbi1i 458 . . 3  |-  ( ( x  e.  { A }  /\  ph )  <->  ( x  =  A  /\  ph )
)
32exbii 1651 . 2  |-  ( E. x ( x  e. 
{ A }  /\  ph )  <->  E. x ( x  =  A  /\  ph ) )
4 df-rex 2514 . 2  |-  ( E. x  e.  { A } ph  <->  E. x ( x  e.  { A }  /\  ph ) )
5 sbc5 3052 . 2  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
63, 4, 53bitr4i 212 1  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   [.wsbc 3028   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-sn 3672
This theorem is referenced by:  rexsng  3707  r19.12sn  3732  iunxsngf  4042  finexdc  7060  exfzdc  10441
  Copyright terms: Public domain W3C validator