ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn GIF version

Theorem r19.12sn 3642
Description: Special case of r19.12 2572 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3029 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2 rexsns 3615 . 2 (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
3 rexsns 3615 . . 3 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
43ralbii 2472 . 2 (∀𝑦𝐵𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑)
51, 2, 43bitr4g 222 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2136  wral 2444  wrex 2445  [wsbc 2951  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator