| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.12sn | GIF version | ||
| Description: Special case of r19.12 2612 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.) |
| Ref | Expression |
|---|---|
| r19.12sn | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcralg 3077 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) | |
| 2 | rexsns 3672 | . 2 ⊢ (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 𝜑) | |
| 3 | rexsns 3672 | . . 3 ⊢ (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑) | |
| 4 | 3 | ralbii 2512 | . 2 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) |
| 5 | 1, 2, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ {𝐴}𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 [wsbc 2998 {csn 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-sn 3639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |