ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn GIF version

Theorem r19.12sn 3699
Description: Special case of r19.12 2612 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3077 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦𝐵 𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑))
2 rexsns 3672 . 2 (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑[𝐴 / 𝑥]𝑦𝐵 𝜑)
3 rexsns 3672 . . 3 (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
43ralbii 2512 . 2 (∀𝑦𝐵𝑥 ∈ {𝐴}𝜑 ↔ ∀𝑦𝐵 [𝐴 / 𝑥]𝜑)
51, 2, 43bitr4g 223 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2176  wral 2484  wrex 2485  [wsbc 2998  {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-sn 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator