ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbi2dva Unicode version

Theorem rabbi2dva 3358
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  B  <->  ps )
)
Assertion
Ref Expression
rabbi2dva  |-  ( ph  ->  ( A  i^i  B
)  =  { x  e.  A  |  ps } )
Distinct variable groups:    ph, x    x, A    x, B
Allowed substitution hint:    ps( x)

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3151 . 2  |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
2 rabbi2dva.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  (
x  e.  B  <->  ps )
)
32rabbidva 2740 . 2  |-  ( ph  ->  { x  e.  A  |  x  e.  B }  =  { x  e.  A  |  ps } )
41, 3eqtrid 2234 1  |-  ( ph  ->  ( A  i^i  B
)  =  { x  e.  A  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {crab 2472    i^i cin 3143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-ral 2473  df-rab 2477  df-in 3150
This theorem is referenced by:  fndmdif  5642  txcnmpt  14250
  Copyright terms: Public domain W3C validator