Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabssdv | Unicode version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
rabssdv.1 |
Ref | Expression |
---|---|
rabssdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabssdv.1 | . . . 4 | |
2 | 1 | 3exp 1197 | . . 3 |
3 | 2 | ralrimiv 2542 | . 2 |
4 | rabss 3224 | . 2 | |
5 | 3, 4 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wcel 2141 wral 2448 crab 2452 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-in 3127 df-ss 3134 |
This theorem is referenced by: zsupssdc 11909 |
Copyright terms: Public domain | W3C validator |