ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabssdv Unicode version

Theorem rabssdv 3273
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
rabssdv.1  |-  ( (
ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )
Assertion
Ref Expression
rabssdv  |-  ( ph  ->  { x  e.  A  |  ps }  C_  B
)
Distinct variable groups:    x, B    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem rabssdv
StepHypRef Expression
1 rabssdv.1 . . . 4  |-  ( (
ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )
213exp 1205 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  x  e.  B ) ) )
32ralrimiv 2578 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  x  e.  B ) )
4 rabss 3270 . 2  |-  ( { x  e.  A  |  ps }  C_  B  <->  A. x  e.  A  ( ps  ->  x  e.  B ) )
53, 4sylibr 134 1  |-  ( ph  ->  { x  e.  A  |  ps }  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    e. wcel 2176   A.wral 2484   {crab 2488    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-in 3172  df-ss 3179
This theorem is referenced by:  zsupssdc  10383
  Copyright terms: Public domain W3C validator