| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabss | Unicode version | ||
| Description: Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| rabss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 |
. . 3
| |
| 2 | 1 | sseq1i 3250 |
. 2
|
| 3 | abss 3293 |
. 2
| |
| 4 | impexp 263 |
. . . 4
| |
| 5 | 4 | albii 1516 |
. . 3
|
| 6 | df-ral 2513 |
. . 3
| |
| 7 | 5, 6 | bitr4i 187 |
. 2
|
| 8 | 2, 3, 7 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-in 3203 df-ss 3210 |
| This theorem is referenced by: rabssdv 3304 dvdsssfz1 12363 phibndlem 12738 dfphi2 12742 mgmidsssn0 13417 istopon 14687 blsscls2 15167 |
| Copyright terms: Public domain | W3C validator |