Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfsellemdc Unicode version

Theorem nninfsellemdc 13206
Description: Lemma for nninfself 13209. Showing that the selection function is well defined. (Contributed by Jim Kingdon, 8-Aug-2022.)
Assertion
Ref Expression
nninfsellemdc  |-  ( ( Q  e.  ( 2o 
^m )  /\  N  e.  om )  -> DECID  A. k  e.  suc  N ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
Distinct variable groups:    k, N    Q, k    i, k
Allowed substitution hints:    Q( i)    N( i)

Proof of Theorem nninfsellemdc
Dummy variables  w  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suceq 4324 . . . . . 6  |-  ( w  =  (/)  ->  suc  w  =  suc  (/) )
21raleqdv 2632 . . . . 5  |-  ( w  =  (/)  ->  ( A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  (/) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
32dcbid 823 . . . 4  |-  ( w  =  (/)  ->  (DECID  A. k  e.  suc  w ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  A. k  e.  suc  (/) ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
43imbi2d 229 . . 3  |-  ( w  =  (/)  ->  ( ( Q  e.  ( 2o 
^m )  -> DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  <->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  (/) ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
5 suceq 4324 . . . . . 6  |-  ( w  =  j  ->  suc  w  =  suc  j )
65raleqdv 2632 . . . . 5  |-  ( w  =  j  ->  ( A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
76dcbid 823 . . . 4  |-  ( w  =  j  ->  (DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
87imbi2d 229 . . 3  |-  ( w  =  j  ->  (
( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  <->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
9 suceq 4324 . . . . . 6  |-  ( w  =  suc  j  ->  suc  w  =  suc  suc  j )
109raleqdv 2632 . . . . 5  |-  ( w  =  suc  j  -> 
( A. k  e. 
suc  w ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1110dcbid 823 . . . 4  |-  ( w  =  suc  j  -> 
(DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1211imbi2d 229 . . 3  |-  ( w  =  suc  j  -> 
( ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  <->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
13 suceq 4324 . . . . . 6  |-  ( w  =  N  ->  suc  w  =  suc  N )
1413raleqdv 2632 . . . . 5  |-  ( w  =  N  ->  ( A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  N ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1514dcbid 823 . . . 4  |-  ( w  =  N  ->  (DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  A. k  e.  suc  N ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1615imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  w ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  <->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  N ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
17 elmapi 6564 . . . . . . 7  |-  ( Q  e.  ( 2o  ^m )  ->  Q : --> 2o )
18 peano1 4508 . . . . . . . 8  |-  (/)  e.  om
19 nnnninf 7023 . . . . . . . 8  |-  ( (/)  e.  om  ->  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )  e. )
2018, 19mp1i 10 . . . . . . 7  |-  ( Q  e.  ( 2o  ^m )  -> 
( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) )  e.
)
2117, 20ffvelrnd 5556 . . . . . 6  |-  ( Q  e.  ( 2o  ^m )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  e.  2o )
22 2onn 6417 . . . . . 6  |-  2o  e.  om
23 elnn 4519 . . . . . 6  |-  ( ( ( Q `  (
i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  e.  2o  /\  2o  e.  om )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  e.  om )
2421, 22, 23sylancl 409 . . . . 5  |-  ( Q  e.  ( 2o  ^m )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  e.  om )
25 1onn 6416 . . . . 5  |-  1o  e.  om
26 nndceq 6395 . . . . 5  |-  ( ( ( Q `  (
i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  e.  om  /\  1o  e.  om )  -> DECID  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o )
2724, 25, 26sylancl 409 . . . 4  |-  ( Q  e.  ( 2o  ^m )  -> DECID  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o )
28 suc0 4333 . . . . . . 7  |-  suc  (/)  =  { (/)
}
2928raleqi 2630 . . . . . 6  |-  ( A. k  e.  suc  (/) ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  { (/) }  ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
30 0ex 4055 . . . . . . 7  |-  (/)  e.  _V
31 eleq2 2203 . . . . . . . . . . 11  |-  ( k  =  (/)  ->  ( i  e.  k  <->  i  e.  (/) ) )
3231ifbid 3493 . . . . . . . . . 10  |-  ( k  =  (/)  ->  if ( i  e.  k ,  1o ,  (/) )  =  if ( i  e.  (/) ,  1o ,  (/) ) )
3332mpteq2dv 4019 . . . . . . . . 9  |-  ( k  =  (/)  ->  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )
3433fveq2d 5425 . . . . . . . 8  |-  ( k  =  (/)  ->  ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) ) )
3534eqeq1d 2148 . . . . . . 7  |-  ( k  =  (/)  ->  ( ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o ) )
3630, 35ralsn 3567 . . . . . 6  |-  ( A. k  e.  { (/) }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o )
3729, 36bitri 183 . . . . 5  |-  ( A. k  e.  suc  (/) ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o )
3837dcbii 825 . . . 4  |-  (DECID  A. k  e.  suc  (/) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  ( Q `  ( i  e.  om  |->  if ( i  e.  (/) ,  1o ,  (/) ) ) )  =  1o )
3927, 38sylibr 133 . . 3  |-  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  (/) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
4017adantl 275 . . . . . . . . . . . 12  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  Q : --> 2o )
41 peano2 4509 . . . . . . . . . . . . . 14  |-  ( j  e.  om  ->  suc  j  e.  om )
4241adantr 274 . . . . . . . . . . . . 13  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  suc  j  e. 
om )
43 nnnninf 7023 . . . . . . . . . . . . 13  |-  ( suc  j  e.  om  ->  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) )  e. )
4442, 43syl 14 . . . . . . . . . . . 12  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) )  e.
)
4540, 44ffvelrnd 5556 . . . . . . . . . . 11  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  e.  2o )
46 elnn 4519 . . . . . . . . . . 11  |-  ( ( ( Q `  (
i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  e.  2o  /\  2o  e.  om )  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  e. 
om )
4745, 22, 46sylancl 409 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  e. 
om )
48 nndceq 6395 . . . . . . . . . 10  |-  ( ( ( Q `  (
i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  e. 
om  /\  1o  e.  om )  -> DECID  ( Q `  (
i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o )
4947, 25, 48sylancl 409 . . . . . . . . 9  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  -> DECID  ( Q `  (
i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o )
50 eleq2 2203 . . . . . . . . . . . . . . . 16  |-  ( k  =  suc  j  -> 
( i  e.  k  <-> 
i  e.  suc  j
) )
5150ifbid 3493 . . . . . . . . . . . . . . 15  |-  ( k  =  suc  j  ->  if ( i  e.  k ,  1o ,  (/) )  =  if (
i  e.  suc  j ,  1o ,  (/) ) )
5251mpteq2dv 4019 . . . . . . . . . . . . . 14  |-  ( k  =  suc  j  -> 
( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) )  =  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )
5352fveq2d 5425 . . . . . . . . . . . . 13  |-  ( k  =  suc  j  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  ( Q `  (
i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) ) )
5453eqeq1d 2148 . . . . . . . . . . . 12  |-  ( k  =  suc  j  -> 
( ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o ) )
5554ralsng 3564 . . . . . . . . . . 11  |-  ( suc  j  e.  om  ->  ( A. k  e.  { suc  j }  ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o ) )
5642, 55syl 14 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  ( A. k  e.  { suc  j }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o ) )
5756dcbid 823 . . . . . . . . 9  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  ->  (DECID  A. k  e.  { suc  j }  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  ( Q `  ( i  e.  om  |->  if ( i  e.  suc  j ,  1o ,  (/) ) ) )  =  1o ) )
5849, 57mpbird 166 . . . . . . . 8  |-  ( ( j  e.  om  /\  Q  e.  ( 2o  ^m )
)  -> DECID  A. k  e.  { suc  j }  ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
59 dcan 918 . . . . . . . 8  |-  (DECID  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  ->  (DECID  A. k  e.  { suc  j }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  -> DECID  ( A. k  e. 
suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  j }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
6058, 59mpan9 279 . . . . . . 7  |-  ( ( ( j  e.  om  /\  Q  e.  ( 2o 
^m ) )  /\ DECID  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  -> DECID  ( A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  j }  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
61 ralunb 3257 . . . . . . . 8  |-  ( A. k  e.  ( suc  j  u.  { suc  j } ) ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  ( A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  j }  ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
6261dcbii 825 . . . . . . 7  |-  (DECID  A. k  e.  ( suc  j  u. 
{ suc  j }
) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  ( A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  /\  A. k  e.  { suc  j }  ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
6360, 62sylibr 133 . . . . . 6  |-  ( ( ( j  e.  om  /\  Q  e.  ( 2o 
^m ) )  /\ DECID  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  -> DECID  A. k  e.  ( suc  j  u. 
{ suc  j }
) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
64 df-suc 4293 . . . . . . . 8  |-  suc  suc  j  =  ( suc  j  u.  { suc  j } )
6564raleqi 2630 . . . . . . 7  |-  ( A. k  e.  suc  suc  j
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  ( suc  j  u.  { suc  j } ) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6665dcbii 825 . . . . . 6  |-  (DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <-> DECID  A. k  e.  ( suc  j  u.  { suc  j } ) ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6763, 66sylibr 133 . . . . 5  |-  ( ( ( j  e.  om  /\  Q  e.  ( 2o 
^m ) )  /\ DECID  A. k  e.  suc  j ( Q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  -> DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
6867exp31 361 . . . 4  |-  ( j  e.  om  ->  ( Q  e.  ( 2o  ^m )  ->  (DECID 
A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  -> DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
6968a2d 26 . . 3  |-  ( j  e.  om  ->  (
( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )  ->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  suc  j ( Q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) ) )
704, 8, 12, 16, 39, 69finds 4514 . 2  |-  ( N  e.  om  ->  ( Q  e.  ( 2o  ^m )  -> DECID  A. k  e.  suc  N
( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
7170impcom 124 1  |-  ( ( Q  e.  ( 2o 
^m )  /\  N  e.  om )  -> DECID  A. k  e.  suc  N ( Q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 819    = wceq 1331    e. wcel 1480   A.wral 2416    u. cun 3069   (/)c0 3363   ifcif 3474   {csn 3527    |-> cmpt 3989   suc csuc 4287   omcom 4504   -->wf 5119   ` cfv 5123  (class class class)co 5774   1oc1o 6306   2oc2o 6307    ^m cmap 6542  ℕxnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  nninfsellemcl  13207  nninfsellemsuc  13208
  Copyright terms: Public domain W3C validator