ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexsn Unicode version

Theorem rexsn 3633
Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.)
Hypotheses
Ref Expression
ralsn.1  |-  A  e. 
_V
ralsn.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexsn  |-  ( E. x  e.  { A } ph  <->  ps )
Distinct variable groups:    x, A    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rexsn
StepHypRef Expression
1 ralsn.1 . 2  |-  A  e. 
_V
2 ralsn.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32rexsng 3630 . 2  |-  ( A  e.  _V  ->  ( E. x  e.  { A } ph  <->  ps ) )
41, 3ax-mp 5 1  |-  ( E. x  e.  { A } ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   E.wrex 2454   _Vcvv 2735   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-sbc 2961  df-sn 3595
This theorem is referenced by:  elsnres  4937  snec  6586  0ct  7096  elreal  7802  restsn  13231
  Copyright terms: Public domain W3C validator