Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexsn | Unicode version |
Description: Restricted existential quantification over a singleton. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
ralsn.1 | |
ralsn.2 |
Ref | Expression |
---|---|
rexsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 | |
2 | ralsn.2 | . . 3 | |
3 | 2 | rexsng 3630 | . 2 |
4 | 1, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 wcel 2146 wrex 2454 cvv 2735 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-sbc 2961 df-sn 3595 |
This theorem is referenced by: elsnres 4937 snec 6586 0ct 7096 elreal 7802 restsn 13231 |
Copyright terms: Public domain | W3C validator |