Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raltp | GIF version |
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
raltp.1 | ⊢ 𝐴 ∈ V |
raltp.2 | ⊢ 𝐵 ∈ V |
raltp.3 | ⊢ 𝐶 ∈ V |
raltp.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
raltp.5 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
raltp.6 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
Ref | Expression |
---|---|
raltp | ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | raltp.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | raltp.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | raltp.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | raltp.5 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
6 | raltp.6 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
7 | 4, 5, 6 | raltpg 3613 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
8 | 1, 2, 3, 7 | mp3an 1319 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 ∀wral 2435 Vcvv 2712 {ctp 3562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-sbc 2938 df-un 3106 df-sn 3566 df-pr 3567 df-tp 3568 |
This theorem is referenced by: fztpval 9986 |
Copyright terms: Public domain | W3C validator |