| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raltp | GIF version | ||
| Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| raltp.1 | ⊢ 𝐴 ∈ V |
| raltp.2 | ⊢ 𝐵 ∈ V |
| raltp.3 | ⊢ 𝐶 ∈ V |
| raltp.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| raltp.5 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) |
| raltp.6 | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| raltp | ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | raltp.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | raltp.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | raltp.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | raltp.5 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) | |
| 6 | raltp.6 | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜃)) | |
| 7 | 4, 5, 6 | raltpg 3719 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃))) |
| 8 | 1, 2, 3, 7 | mp3an 1371 | 1 ⊢ (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Vcvv 2799 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: fztpval 10275 |
| Copyright terms: Public domain | W3C validator |