ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raltpg Unicode version

Theorem raltpg 3675
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
raltpg.3  |-  ( x  =  C  ->  ( ph 
<->  th ) )
Assertion
Ref Expression
raltpg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  /\ 
ch  /\  th )
) )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x    th, x
Allowed substitution hints:    ph( x)    V( x)    W( x)    X( x)

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 ralprg.2 . . . . 5  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
31, 2ralprg 3673 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } ph  <->  ( ps  /\  ch ) ) )
4 raltpg.3 . . . . 5  |-  ( x  =  C  ->  ( ph 
<->  th ) )
54ralsng 3662 . . . 4  |-  ( C  e.  X  ->  ( A. x  e.  { C } ph  <->  th ) )
63, 5bi2anan9 606 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  (
( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) 
<->  ( ( ps  /\  ch )  /\  th )
) )
763impa 1196 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A. x  e.  { A ,  B } ph  /\  A. x  e.  { C } ph ) 
<->  ( ( ps  /\  ch )  /\  th )
) )
8 df-tp 3630 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98raleqi 2697 . . 3  |-  ( A. x  e.  { A ,  B ,  C } ph 
<-> 
A. x  e.  ( { A ,  B }  u.  { C } ) ph )
10 ralunb 3344 . . 3  |-  ( A. x  e.  ( { A ,  B }  u.  { C } )
ph 
<->  ( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) )
119, 10bitri 184 . 2  |-  ( A. x  e.  { A ,  B ,  C } ph 
<->  ( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) )
12 df-3an 982 . 2  |-  ( ( ps  /\  ch  /\  th )  <->  ( ( ps 
/\  ch )  /\  th ) )
137, 11, 123bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  /\ 
ch  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    u. cun 3155   {csn 3622   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-sbc 2990  df-un 3161  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by:  raltp  3679  sumtp  11579
  Copyright terms: Public domain W3C validator