ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raltpg Unicode version

Theorem raltpg 3696
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralprg.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
ralprg.2  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
raltpg.3  |-  ( x  =  C  ->  ( ph 
<->  th ) )
Assertion
Ref Expression
raltpg  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  /\ 
ch  /\  th )
) )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x    th, x
Allowed substitution hints:    ph( x)    V( x)    W( x)    X( x)

Proof of Theorem raltpg
StepHypRef Expression
1 ralprg.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 ralprg.2 . . . . 5  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
31, 2ralprg 3694 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A. x  e. 
{ A ,  B } ph  <->  ( ps  /\  ch ) ) )
4 raltpg.3 . . . . 5  |-  ( x  =  C  ->  ( ph 
<->  th ) )
54ralsng 3683 . . . 4  |-  ( C  e.  X  ->  ( A. x  e.  { C } ph  <->  th ) )
63, 5bi2anan9 606 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  C  e.  X )  ->  (
( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) 
<->  ( ( ps  /\  ch )  /\  th )
) )
763impa 1197 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A. x  e.  { A ,  B } ph  /\  A. x  e.  { C } ph ) 
<->  ( ( ps  /\  ch )  /\  th )
) )
8 df-tp 3651 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
98raleqi 2709 . . 3  |-  ( A. x  e.  { A ,  B ,  C } ph 
<-> 
A. x  e.  ( { A ,  B }  u.  { C } ) ph )
10 ralunb 3362 . . 3  |-  ( A. x  e.  ( { A ,  B }  u.  { C } )
ph 
<->  ( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) )
119, 10bitri 184 . 2  |-  ( A. x  e.  { A ,  B ,  C } ph 
<->  ( A. x  e. 
{ A ,  B } ph  /\  A. x  e.  { C } ph ) )
12 df-3an 983 . 2  |-  ( ( ps  /\  ch  /\  th )  <->  ( ( ps 
/\  ch )  /\  th ) )
137, 11, 123bitr4g 223 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A. x  e. 
{ A ,  B ,  C } ph  <->  ( ps  /\ 
ch  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486    u. cun 3172   {csn 3643   {cpr 3644   {ctp 3645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-tp 3651
This theorem is referenced by:  raltp  3700  sumtp  11840
  Copyright terms: Public domain W3C validator